亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

機械學習の簡素化への旅

Dec 23, 2024 pm 08:45 PM

A Journey into Machine Learning Simplification

機械學習プロジェクトを開始することは、大きなパズルを解くように圧倒されるかもしれません。私はしばらく機械學習の旅を続けてきましたが、學びたいと思っている他の人たちに教えたり指導したりできることに興奮しています。今日は、最初の機械學習 (ML) パイプラインを作成する方法を説明します。このシンプルかつ強力なツールは、ML モデルを効果的に構(gòu)築および整理するのに役立ちます。それでは、詳しく見ていきましょう。

問題: 機械學習ワークフローの管理
機械學習を始めたとき、私が直面した課題の 1 つは、ワークフローが構(gòu)造化され、再現(xiàn)可能であることを確認することでした。機能のスケーリング、モデルのトレーニング、予測の実行は、ばらばらの手順のように感じることが多く、毎回手動で処理すると人的エラーが発生しやすくなります。そこでパイプラインの概念が登場します。

ML パイプラインを使用すると、複數(shù)の処理ステップをまとめて順序付けして、一貫性を確保し、複雑さを軽減できます。 Python ライブラリ scikit-learn を使用すると、パイプラインの作成は簡単です。そしてあえて言えば、とても楽しいです!

パイプラインの成分
私の ML パイプラインを?qū)g現(xiàn)したコードは次のとおりです:

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
import numpy as np
from sklearn.model_selection import train_test_split


steps = [("Scaling", StandardScaler()),("classifier",LogisticRegression())]
pipe = Pipeline(steps)
pipe

X,y = make_classification(random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)


pipe.fit(X_train, y_train)

pipe.predict(X_test)

pipe.score(X_test, y_test)

詳しく見てみましょう:

データの準備: make_classification を使用して合成分類データを生成しました。これにより、外部データセットを必要とせずにパイプラインをテストできるようになりました。
パイプラインのステップ: パイプラインは 2 つの主要コンポーネントで構(gòu)成されます:
StandardScaler: すべての特徴がゼロ平均と単位分散になるようにスケーリングされるようにします。
LogisticRegression: バイナリの結(jié)果を予測するためのシンプルかつ強力な分類器です。
トレーニングと評価: パイプラインを使用して、単一のシームレスなフローでモデルをトレーニングし、そのパフォーマンスを評価しました。 Pipe.score() メソッドは、モデルの精度を測定する簡単な方法を提供しました。
學べること
このパイプラインの構(gòu)築は単なる演習ではありません。主要な ML 概念を?qū)Wぶ機會です:

モジュール性の重要性: パイプラインは機械學習ワークフローをモジュール化し、コンポーネントの交換を容易にします (例: 別のスケーラーや分類子を試す)。
再現(xiàn)性が鍵です: パイプラインは前処理とモデルのトレーニングを標準化することで、コードの再利用または共有時のエラーのリスクを最小限に抑えます。
効率の向上: スケーリングや予測などの反復的なタスクを自動化すると、時間が節(jié)約され、実験間の一貫性が確保されます。
結(jié)果と反省
パイプラインは私の合成データセットで良好にパフォーマンスし、90% 以上の精度スコアを達成しました。この結(jié)果は畫期的なものではありませんが、構(gòu)造化されたアプローチにより、より複雑なプロジェクトに取り組む自信が得られます。

私がもっと興奮するのは、このプロセスを他の人と共有することです。始めたばかりの場合、このパイプラインは機械學習ワークフローをマスターするための最初のステップです?;兢蛟俅_認する人にとっては、素晴らしい復習になります。

次に探索できる內(nèi)容は次のとおりです:

  • 特徴の選択やカテゴリ変數(shù)のエンコードなど、より複雑な前処理ステップを試してください。
  • パイプライン フレームワーク內(nèi)で、デシジョン ツリーやアンサンブル モデルなどの他のアルゴリズムを使用します。
  • GridSearchCV とパイプラインを組み合わせたハイパーパラメータ調(diào)整などの高度なテクニックを?qū)Wびましょう。
  • このパイプラインの作成は、共有の旅の始まりを示します。それは、挑戦的であると同時に魅力的なものになることが約束されています。私と一緒に學んでも、基礎(chǔ)を再確認しても。

パイプラインを 1 つずつ一緒に成長させていきましょう!

以上が機械學習の簡素化への旅の詳細內(nèi)容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當する法的責任を負いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構(gòu)造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を?qū)g裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Python関數(shù)引數(shù)とパラメーター Python関數(shù)引數(shù)とパラメーター Jul 04, 2025 am 03:26 AM

パラメーターは関數(shù)を定義するときはプレースホルダーであり、引數(shù)は呼び出し時に特定の値が渡されます。 1。位置パラメーターを順番に渡す必要があり、順序が正しくない場合は結(jié)果のエラーにつながります。 2。キーワードパラメーターはパラメーター名で指定されており、順序を変更して読みやすさを向上させることができます。 3.デフォルトのパラメーター値は、複製コードを避けるために定義されたときに割り當てられますが、変數(shù)オブジェクトはデフォルト値として避ける必要があります。 4. Argsおよび *Kwargsは、不確実な數(shù)のパラメーターを処理でき、一般的なインターフェイスまたはデコレータに適していますが、読みやすさを維持するためには注意して使用する必要があります。

Pythonジェネレーターと反復器を説明します。 Pythonジェネレーターと反復器を説明します。 Jul 05, 2025 am 02:55 AM

イテレータは、__iter __()および__next __()メソッドを?qū)g裝するオブジェクトです。ジェネレーターは、単純化されたバージョンのイテレーターです。これは、収量キーワードを介してこれらのメソッドを自動的に実裝しています。 1. Iteratorは、次の()を呼び出すたびに要素を返し、要素がなくなると停止例外をスローします。 2。ジェネレーターは関數(shù)定義を使用して、オンデマンドでデータを生成し、メモリを保存し、無限シーケンスをサポートします。 3。既存のセットを処理するときに反復器を使用すると、大きなファイルを読み取るときに行ごとにロードするなど、ビッグデータや怠zyな評価を動的に生成するときにジェネレーターを使用します。注:リストなどの反復オブジェクトは反復因子ではありません。イテレーターがその端に達した後、それらは再作成する必要があり、発電機はそれを一度しか通過できません。

python `@classmethod`デコレーターが説明しました python `@classmethod`デコレーターが説明しました Jul 04, 2025 am 03:26 AM

クラスメソッドは、@ClassMethodデコレーターを介してPythonで定義されるメソッドです。最初のパラメーターはクラス自體(CLS)で、クラス狀態(tài)へのアクセスまたは変更に使用されます。特定のインスタンスではなく、クラス全體に影響を與えるクラスまたはインスタンスを通じて呼び出すことができます。たとえば、Personクラスでは、show_count()メソッドは作成されたオブジェクトの數(shù)を數(shù)えます。クラスメソッドを定義するときは、@ClassMethodデコレータを使用して、Change_Var(new_Value)メソッドなどの最初のパラメーターCLSに名前を付けてクラス変數(shù)を変更する必要があります。クラス方法は、インスタンスメソッド(自己パラメーター)および靜的メソッド(自動パラメーターなし)とは異なり、工場の方法、代替コンストラクター、およびクラス変數(shù)の管理に適しています。一般的な用途には以下が含まれます。

PythonでAPI認証を処理する方法 PythonでAPI認証を処理する方法 Jul 13, 2025 am 02:22 AM

API認証を扱うための鍵は、認証方法を正しく理解して使用することです。 1。Apikeyは、通常、リクエストヘッダーまたはURLパラメーターに配置されている最も単純な認証方法です。 2。BasicAuthは、內(nèi)部システムに適したBase64エンコード送信にユーザー名とパスワードを使用します。 3。OAUTH2は、最初にclient_idとclient_secretを介してトークンを取得し、次にリクエストヘッダーにbearertokenを持ち込む必要があります。 4。トークンの有効期限に対処するために、トークン管理クラスをカプセル化し、トークンを自動的に更新できます。要するに、文書に従って適切な方法を選択し、重要な情報を安全に保存することが重要です。

Python Magic MethodsまたはDunder Methodとは何ですか? Python Magic MethodsまたはDunder Methodとは何ですか? Jul 04, 2025 am 03:20 AM

PythonのMagicMethods(またはDunder Methods)は、オブジェクトの動作を定義するために使用される特別な方法であり、二重のアンダースコアで始まり、終了します。 1.オブジェクトは、追加、比較、文字列表現(xiàn)などの組み込み操作に応答できるようにします。 2.一般的なユースケースには、オブジェクトの初期化と表現(xiàn)(__init__、__Repr__、__str__)、算術(shù)操作(__ add__、__sub__、__mul__)、および比較操作(__eq__、___lt__)が含まれます。 3。それを使用するときは、彼らの行動が期待を満たしていることを確認してください。たとえば、__Repr__はリファクタリング可能なオブジェクトの式を返す必要があり、算術(shù)メソッドは新しいインスタンスを返す必要があります。 4.過剰使用または混亂を招くことは避ける必要があります。

Pythonメモリ管理はどのように機能しますか? Pythonメモリ管理はどのように機能しますか? Jul 04, 2025 am 03:26 AM

PythonManagesMemoryAutomatelyUsingTuntingAndagarBageCollector.ReferencountingTrackShowManyvariablesRefertoAnobject、およびThemeMoryisfreed.

python `@property`デコレーター python `@property`デコレーター Jul 04, 2025 am 03:28 AM

@Propertyは、プロパティとしてメソッドを裝備するために使用されるPythonのデコレーターであり、プロパティにアクセスするときに論理的判斷または値の動的計算を可能にします。 1. @propertyデコレータを介してゲッターメソッドを定義し、外部が屬性へのアクセスなどのメソッドを呼び出すようにします。 2.チェック値の有効性など、.setterを使用して割り當て動作を制御できます。.setterが定義されていない場合、読み取り専用屬性です。 3.プロパティの割り當て検証、屬性値の動的生成、內(nèi)部実裝の詳細を隠すなどのシーンに適しています。 4.それを使用する場合、屬性名はプライベート変數(shù)名と異なるため、デッドループを避け、軽量操作に適していることに注意してください。 5。例では、サークルクラスは半徑を非陰性に制限し、個人クラスはfull_name屬性を動的に生成します

See all articles