亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

ホームページ バックエンド開発 Python チュートリアル DSPy: 言語モデル プログラミングへの新しいアプローチ

DSPy: 言語モデル プログラミングへの新しいアプローチ

Nov 30, 2024 pm 06:33 PM

DSPy: A New Approach to Language Model Programming

課題: 従來のプロンプトを超えて進む

言語モデル (LLM) を使用する場合、開発者は共通の一連の課題に直面します。私たちは完璧なプロンプトを作成するために數(shù)えきれないほどの時間を費やしましたが、モデルを切り替えたり、入力がわずかに変化したりすると、慎重に設(shè)計されたソリューションが機能しなくなることがわかりました。プロンプト エンジニアリングの従來のアプローチは手作業(yè)であり、時間がかかり、予測不可能なことがよくあります。

解決策: スタンフォードの DSPy フレームワーク

DSPy (Declarative Self-improving Python) は、これらの課題に対するスタンフォード NLP の答えとして登場しました。彼らの Web サイト (dspy.ai) で説明されているように、これは「言語モデルをプロンプトするのではなくプログラミングするためのオープンソース フレームワーク」です。これにより、モジュール型 AI システムの構(gòu)築における高速な反復(fù)が可能になり、単純な分類器、高度な RAG パイプライン、エージェント ループのいずれを構(gòu)築する場合でも、プロンプトと重みを最適化するためのアルゴリズムが提供されます。

仕組み: コアコンポーネント

1. はじめに

まず、フレームワークをインストールします:

pip install -U dspy

import dspy
lm = dspy.LM('openai/gpt-4-mini', api_key='YOUR_OPENAI_API_KEY')
dspy.configure(lm=lm)

2. 署名を理解する

署名は DSPy の宣言型アプローチの基礎(chǔ)です。これらは、入力と出力のセマンティックな役割を単純な形式で定義します。

# Simple question answering
"question -> answer"

# Retrieval-based QA
"context: list[str], question: str -> answer: str"

# Multiple-choice with reasoning
"question, choices: list[str] -> reasoning: str, selection: int"

3. モジュールの操作

DSPy は、さまざまなユースケースに対応するいくつかの主要なモジュールを提供します。

  • 予測: 直接的な LLM 応答
  • ChainOfThought: 段階的な推論
  • ProgramOfThought: コードベースのソリューション
  • ReAct: エージェントベースのインタラクション
  • MultiChainComparison: 複數(shù)の推論パスを比較します

4. 現(xiàn)実世界のアプリケーション

數(shù)學(xué)的問題解決

math = dspy.ChainOfThought("question -> answer: float")
math(question="Two dice are tossed. What is the probability that the sum equals two?")

検索拡張生成 (RAG)

def search_wikipedia(query: str) -> list[str]:
    results = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')(query, k=3)
    return [x['text'] for x in results]

rag = dspy.ChainOfThought('context, question -> response')

基本を超えて

DSPy は、さまざまな高度なユースケースをサポートしています:

  • 分類タスク
  • 情報抽出
  • ツールを備えたエージェントベースのシステム
  • 複雑な RAG パイプライン

フレームワークの自己改善的な性質(zhì)は、アプリケーションが対話と結(jié)果から學(xué)習して、時間の経過とともにパフォーマンスを最適化できることを意味します。

始める準備はできていますか?

DSPy ドキュメントとコミュニティ リポジトリ (https://github.com/gabrielvanderlei/DSPy-examples) で完全な例を見つけ、より多くのユースケースを探索できます。

DSPy は、従來のプロンプト エンジニアリングから言語モデルを使用した宣言型プログラミングへのパラダイム シフトを表しています。これにより、LLM 開発に構(gòu)造、信頼性、予測可能性がもたらされ、AI を活用したアプリケーションの構(gòu)築と保守が容易になります。

以上がDSPy: 言語モデル プログラミングへの新しいアプローチの詳細內(nèi)容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當する法的責任を負いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PythonでAPI認証を処理する方法 PythonでAPI認証を処理する方法 Jul 13, 2025 am 02:22 AM

API認証を扱うための鍵は、認証方法を正しく理解して使用することです。 1。Apikeyは、通常、リクエストヘッダーまたはURLパラメーターに配置されている最も単純な認証方法です。 2。BasicAuthは、內(nèi)部システムに適したBase64エンコード送信にユーザー名とパスワードを使用します。 3。OAUTH2は、最初にclient_idとclient_secretを介してトークンを取得し、次にリクエストヘッダーにbearertokenを持ち込む必要があります。 4。トークンの有効期限に対処するために、トークン管理クラスをカプセル化し、トークンを自動的に更新できます。要するに、文書に従って適切な方法を選択し、重要な情報を安全に保存することが重要です。

Pythonの主張を説明します。 Pythonの主張を説明します。 Jul 07, 2025 am 12:14 AM

Assertは、Pythonでデバッグに使用されるアサーションツールであり、條件が満たされないときにアサーションエラーを投げます。その構(gòu)文は、アサート條件とオプションのエラー情報であり、パラメーターチェック、ステータス確認などの內(nèi)部ロジック検証に適していますが、セキュリティまたはユーザーの入力チェックには使用できず、明確な迅速な情報と組み合わせて使用??する必要があります。例外処理を置き換えるのではなく、開発段階での補助デバッグにのみ利用できます。

Python Iteratorsとは何ですか? Python Iteratorsとは何ですか? Jul 08, 2025 am 02:56 AM

inpython、iteratoratorSareObjectsthatallopingthroughcollectionsbyimplementing __()and__next __()

Pythonタイプのヒントとは何ですか? Pythonタイプのヒントとは何ですか? Jul 07, 2025 am 02:55 AM

タイプヒントシンパソコンの問題と、ポテンシャルを使用して、dynamivitytedcodedededevelowingdeexpecifeedtypes.theyenhanceReadeadability、inableearlybugdetection、およびrequrovetoolingsusingsupport.typehintsareadddeduneadddedusingolon(:)

一度に2つのリストを繰り返す方法Python 一度に2つのリストを繰り返す方法Python Jul 09, 2025 am 01:13 AM

Pythonで2つのリストを同時にトラバースする一般的な方法は、Zip()関數(shù)を使用することです。これは、複數(shù)のリストを順番にペアリングし、最短になります。リストの長さが一貫していない場合は、itertools.zip_longest()を使用して最長になり、欠損値を入力できます。 enumerate()と組み合わせて、同時にインデックスを取得できます。 1.Zip()は簡潔で実用的で、ペアのデータ反復(fù)に適しています。 2.zip_longest()は、一貫性のない長さを扱うときにデフォルト値を入力できます。 3. Enumerate(Zip())は、トラバーサル中にインデックスを取得し、さまざまな複雑なシナリオのニーズを満たすことができます。

Python Fastapiチュートリアル Python Fastapiチュートリアル Jul 12, 2025 am 02:42 AM

Pythonを使用して最新の効率的なAPIを作成するには、Fastapiをお勧めします。標準のPythonタイプのプロンプトに基づいており、優(yōu)れたパフォーマンスでドキュメントを自動的に生成できます。 FastAPIおよびASGIサーバーUVICORNをインストールした後、インターフェイスコードを記述できます。ルートを定義し、処理機能を作成し、データを返すことにより、APIをすばやく構(gòu)築できます。 Fastapiは、さまざまなHTTPメソッドをサポートし、自動的に生成されたSwaggeruiおよびRedocドキュメントシステムを提供します。 URLパラメーターはパス定義を介してキャプチャできますが、クエリパラメーターは、関數(shù)パラメーターのデフォルト値を設(shè)定することで実裝できます。 Pydanticモデルの合理的な使用は、開発の効率と精度を改善するのに役立ちます。

PythonでAPIをテストする方法 PythonでAPIをテストする方法 Jul 12, 2025 am 02:47 AM

APIをテストするには、Pythonのリクエストライブラリを使用する必要があります。手順は、ライブラリのインストール、リクエストの送信、応答の確認、タイムアウトの設(shè)定、再試行です。まず、pipinstallRequestsを介してライブラリをインストールします。次に、requests.get()またはrequests.post()およびその他のメソッドを使用して、get requestsを送信または投稿します。次に、respons.status_codeとresponse.json()を確認して、返品結(jié)果が期待に準拠していることを確認します。最後に、タイムアウトパラメーターを追加してタイムアウト時間を設(shè)定し、再試行ライブラリを組み合わせて自動再生を?qū)g現(xiàn)して安定性を高めます。

Python仮想環(huán)境のセットアップと使用 Python仮想環(huán)境のセットアップと使用 Jul 06, 2025 am 02:56 AM

仮想環(huán)境は、さまざまなプロジェクトの依存関係を分離できます。 Python獨自のvenvモジュールを使用して作成されたコマンドは、python-mvenvenvです。アクティベーション方法:WindowsはEnv \ Scripts \ Activateを使用し、MacOS/LinuxはSourceENV/Bin/Activateを使用します。インストールパッケージでは、pipinstallを使用し、pipfreeze> requincement.txtを使用して要件ファイルを生成し、pipinstall-rrequirements.txtを使用して環(huán)境を復(fù)元します。注意事項には、GITに提出しない、新しい端末が開かれるたびに再アクティブ化すること、およびIDEが自動識別と切り替えを使用することが含まれます。

See all articles