Matplotlib グラフの日時軸形式の変更
日時インデックスを使用して時系列をプロットする場合、多くの場合、 x 軸ラベルは、年と月の組み合わせなど、特定の詳細レベルを表示します。これは、matplotlib.dates モジュールの DateFormatter クラスを使用することで実現(xiàn)できます。
問題:
ユーザーは datetime でインデックス付けされた系列をプロットしたいと考えていますが、グラフは時間値を秒まで表示するため、ラベルが亂雑になります。希望の形式は、年と月のみを表示することです (例: "2014-01" または "2016 March")。
解決策:
希望の形式を?qū)g現(xiàn)するには、次の手順に従います:
- 必要なモジュールをインポートします: numpy (np)、pandas (pd)、matplotlib.pyplot (plt)、および matplotlib.dates (mdates)。
- 日時インデックスとランダム値を使用してサンプル データフレームを作成します。
- plt.subplots() を使用して Figure と軸を作成します。
- ax.plot(df.index, df) を呼び出して系列をプロットします。 .values).
- ax.set_xticks(df.index) を使用して x 軸の目盛りを指定します。
- DateFormatter を使用して、主目盛りおよび副目盛りフォーマッタを指定します。この例では、mdates.DateFormatter("%Y-%m") を使用して日付を "YYYY-MM" 形式で表示します。
- _ = plt を使用して X 軸の目盛りラベルを回転します (オプション)。 .xticks(rotation=90) .
結(jié)果のグラフには、年と月の値のみを示す、希望の日時軸書式設(shè)定で系列データが表示されます。
以上がMatplotlib グラフの日時軸を書式設(shè)定して年と月のみを表示する方法の詳細內(nèi)容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

ホットAIツール

Undress AI Tool
脫衣畫像を無料で

Undresser.AI Undress
リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover
寫真から衣服を削除するオンライン AI ツール。

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中國語版
中國語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

API認(rèn)証を扱うための鍵は、認(rèn)証方法を正しく理解して使用することです。 1。Apikeyは、通常、リクエストヘッダーまたはURLパラメーターに配置されている最も単純な認(rèn)証方法です。 2。BasicAuthは、內(nèi)部システムに適したBase64エンコード送信にユーザー名とパスワードを使用します。 3。OAUTH2は、最初にclient_idとclient_secretを介してトークンを取得し、次にリクエストヘッダーにbearertokenを持ち込む必要があります。 4。トークンの有効期限に対処するために、トークン管理クラスをカプセル化し、トークンを自動的に更新できます。要するに、文書に従って適切な方法を選択し、重要な情報を安全に保存することが重要です。

Assertは、Pythonでデバッグに使用されるアサーションツールであり、條件が満たされないときにアサーションエラーを投げます。その構(gòu)文は、アサート條件とオプションのエラー情報であり、パラメーターチェック、ステータス確認(rèn)などの內(nèi)部ロジック検証に適していますが、セキュリティまたはユーザーの入力チェックには使用できず、明確な迅速な情報と組み合わせて使用??する必要があります。例外処理を置き換えるのではなく、開発段階での補助デバッグにのみ利用できます。

inpython、iteratoratorSareObjectsthatallopingthroughcollectionsbyimplementing __()and__next __()

タイプヒントシンパソコンの問題と、ポテンシャルを使用して、dynamivitytedcodedededevelowingdeexpecifeedtypes.theyenhanceReadeadability、inableearlybugdetection、およびrequrovetoolingsusingsupport.typehintsareadddeduneadddedusingolon(:)

Pythonで2つのリストを同時にトラバースする一般的な方法は、Zip()関數(shù)を使用することです。これは、複數(shù)のリストを順番にペアリングし、最短になります。リストの長さが一貫していない場合は、itertools.zip_longest()を使用して最長になり、欠損値を入力できます。 enumerate()と組み合わせて、同時にインデックスを取得できます。 1.Zip()は簡潔で実用的で、ペアのデータ反復(fù)に適しています。 2.zip_longest()は、一貫性のない長さを扱うときにデフォルト値を入力できます。 3. Enumerate(Zip())は、トラバーサル中にインデックスを取得し、さまざまな複雑なシナリオのニーズを満たすことができます。

Pythonを使用して最新の効率的なAPIを作成するには、Fastapiをお勧めします。標(biāo)準(zhǔn)のPythonタイプのプロンプトに基づいており、優(yōu)れたパフォーマンスでドキュメントを自動的に生成できます。 FastAPIおよびASGIサーバーUVICORNをインストールした後、インターフェイスコードを記述できます。ルートを定義し、処理機能を作成し、データを返すことにより、APIをすばやく構(gòu)築できます。 Fastapiは、さまざまなHTTPメソッドをサポートし、自動的に生成されたSwaggeruiおよびRedocドキュメントシステムを提供します。 URLパラメーターはパス定義を介してキャプチャできますが、クエリパラメーターは、関數(shù)パラメーターのデフォルト値を設(shè)定することで実裝できます。 Pydanticモデルの合理的な使用は、開発の効率と精度を改善するのに役立ちます。

APIをテストするには、Pythonのリクエストライブラリを使用する必要があります。手順は、ライブラリのインストール、リクエストの送信、応答の確認(rèn)、タイムアウトの設(shè)定、再試行です。まず、pipinstallRequestsを介してライブラリをインストールします。次に、requests.get()またはrequests.post()およびその他のメソッドを使用して、get requestsを送信または投稿します。次に、respons.status_codeとresponse.json()を確認(rèn)して、返品結(jié)果が期待に準(zhǔn)拠していることを確認(rèn)します。最後に、タイムアウトパラメーターを追加してタイムアウト時間を設(shè)定し、再試行ライブラリを組み合わせて自動再生を?qū)g現(xiàn)して安定性を高めます。

仮想環(huán)境は、さまざまなプロジェクトの依存関係を分離できます。 Python獨自のvenvモジュールを使用して作成されたコマンドは、python-mvenvenvです。アクティベーション方法:WindowsはEnv \ Scripts \ Activateを使用し、MacOS/LinuxはSourceENV/Bin/Activateを使用します。インストールパッケージでは、pipinstallを使用し、pipfreeze> requincement.txtを使用して要件ファイルを生成し、pipinstall-rrequirements.txtを使用して環(huán)境を復(fù)元します。注意事項には、GITに提出しない、新しい端末が開かれるたびに再アクティブ化すること、およびIDEが自動識別と切り替えを使用することが含まれます。
