


Extraction intelligente de données PDF et création de bases de données
Jan 13, 2025 pm 04:20 PMObjectif du projet?: Développer un système pour extraire des données structurées et non structurées à partir de PDF fournis par le fournisseur, les stocker dans une base de données pour une recherche et une récupération efficaces, et intégrer un chatbot pour l'interrogation en langage naturel des informations extraites. .
Portée du projet?:
-
Entrée?: PDF diversement structurés (texte, titres, paragraphes, tableaux, puces), y compris des appels d'offres, des contrats, des manuels et des rapports.
-
Fonctions clés?:
- Extraction précise des données, à l'exclusion des en-têtes/pieds de page non pertinents.
- Reconnaissance et structuration précises des tableaux, reliant les tableaux à leurs titres en texte gras (généralement suivis de deux points). Gère les données de table imbriquées.
- Extraction et organisation des puces sous forme de listes imbriquées.
- Structuration dynamique du texte utilisant les titres comme clés et le texte correspondant comme valeurs.
- Nettoyage des données (suppression de symboles, normalisation de l'espace).
-
Gestion des données et requêtes?:
- Elasticsearch pour l'indexation et la recherche.
- Schéma de base de données accueillant des données structurées (tableaux) et non structurées (texte).
Défis techniques et solutions?:
-
Précision des données?: Utilisez des techniques avancées de PNL (par exemple, spaCy, Stanford CoreNLP) pour améliorer la précision de l'identification des titres, des tableaux et des puces. Pensez à utiliser des modèles d'apprentissage automatique formés sur des exemples de fichiers PDF pour améliorer la précision.
-
Suppression des en-têtes/pieds de page?: Implémentez une détection plus sophistiquée des en-têtes/pieds de page à l'aide de techniques telles que la comparaison de l'espacement des lignes et des tailles de police sur plusieurs pages pour identifier des modèles cohérents. Explorez l'utilisation de modèles pré-entra?nés pour l'analyse de la mise en page des documents.
-
**Tableau
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

La clé pour gérer l'authentification de l'API est de comprendre et d'utiliser correctement la méthode d'authentification. 1. Apikey est la méthode d'authentification la plus simple, généralement placée dans l'en-tête de demande ou les paramètres d'URL; 2. BasicAuth utilise le nom d'utilisateur et le mot de passe pour la transmission de codage Base64, qui convient aux systèmes internes; 3. OAuth2 doit d'abord obtenir le jeton via client_id et client_secret, puis apporter le Bearertoken dans l'en-tête de demande; 4. Afin de gérer l'expiration des jetons, la classe de gestion des jetons peut être encapsulée et rafra?chie automatiquement le jeton; En bref, la sélection de la méthode appropriée en fonction du document et le stockage en toute sécurité des informations clés sont la clé.

Assert est un outil d'affirmation utilisé dans Python pour le débogage et lance une affirmation d'établissement lorsque la condition n'est pas remplie. Sa syntaxe est affirmer la condition plus les informations d'erreur facultatives, qui conviennent à la vérification de la logique interne telle que la vérification des paramètres, la confirmation d'état, etc., mais ne peuvent pas être utilisées pour la sécurité ou la vérification des entrées des utilisateurs, et doit être utilisée en conjonction avec des informations d'invite claires. Il n'est disponible que pour le débogage auxiliaire au stade de développement plut?t que pour remplacer la manipulation des exceptions.

Inpython, itérateurslawjectsThatallowloopingthroughCollectionsbyImpleting __iter __ () et__Next __ (). 1) iteratorsworkVeatheitorat

TypeHintsInpythonsolvetheproblebandofambigu?té et opposant à un montant de type de type parallèlement au développement de l'aménagement en fonction des types de type.

Une méthode courante pour parcourir deux listes simultanément dans Python consiste à utiliser la fonction zip (), qui appariera plusieurs listes dans l'ordre et sera la plus courte; Si la longueur de liste est incohérente, vous pouvez utiliser itertools.zip_langest () pour être le plus long et remplir les valeurs manquantes; Combiné avec enumerate (), vous pouvez obtenir l'index en même temps. 1.zip () est concis et pratique, adapté à l'itération des données appariées; 2.zip_langest () peut remplir la valeur par défaut lorsqu'il s'agit de longueurs incohérentes; 3. L'énumération (zip ()) peut obtenir des indices pendant la traversée, en répondant aux besoins d'une variété de scénarios complexes.

Pour créer des API modernes et efficaces à l'aide de Python, FastAPI est recommandé; Il est basé sur des invites de type Python standard et peut générer automatiquement des documents, avec d'excellentes performances. Après avoir installé FastAPI et ASGI Server Uvicorn, vous pouvez écrire du code d'interface. En définissant les itinéraires, en écrivant des fonctions de traitement et en renvoyant des données, les API peuvent être rapidement construites. Fastapi prend en charge une variété de méthodes HTTP et fournit des systèmes de documentation SwaggerUI et Redoc générés automatiquement. Les paramètres d'URL peuvent être capturés via la définition du chemin, tandis que les paramètres de requête peuvent être implémentés en définissant des valeurs par défaut pour les paramètres de fonction. L'utilisation rationnelle des modèles pydantiques peut aider à améliorer l'efficacité du développement et la précision.

Pour tester l'API, vous devez utiliser la bibliothèque des demandes de Python. Les étapes consistent à installer la bibliothèque, à envoyer des demandes, à vérifier les réponses, à définir des délais d'attente et à réessayer. Tout d'abord, installez la bibliothèque via PiPinstallRequests; Utilisez ensuite les demandes.get () ou les demandes.Post () et d'autres méthodes pour envoyer des demandes GET ou POST; Vérifiez ensuite la réponse.status_code et la réponse.json () pour vous assurer que le résultat de retour est en conformité avec les attentes; Enfin, ajoutez des paramètres de délai d'expiration pour définir l'heure du délai d'expiration et combinez la bibliothèque de réessayer pour obtenir une nouvelle tentative automatique pour améliorer la stabilité.

Un environnement virtuel peut isoler les dépendances de différents projets. Créé à l'aide du propre module VENV de Python, la commande est Python-Mvenvenv; Méthode d'activation: Windows utilise Env \ Scripts \ Activate, MacOS / Linux utilise SourceEnv / Bin / Activate; Le package d'installation utilise pipinstall, utilisez PipFreeze> exigences.txt pour générer des fichiers d'exigences et utilisez pipinstall-rrequiments.txt pour restaurer l'environnement; Les précautions incluent ne pas se soumettre au GIT, réactiver chaque fois que le nouveau terminal est ouvert, et l'identification et la commutation automatique peuvent être utilisées par IDE.
