Optional chaining (?.) in JavaScript safely accesses nested properties by returning undefined if any part of the chain is null or undefined, preventing runtime errors. 1. It allows safe access to deeply nested object properties, such as user.profile?.settings?.theme. 2. It enables calling methods that may not exist, like obj.someMethod?.(). 3. It supports safe array element access, e.g., users[0]?.name. 4. It works with dynamic property keys, such as user.contact?.[key]. However, it cannot be used on the left-hand side of assignments, and should be combined with nullish coalescing (??) for default values, as in user.preferences?.theme ?? 'light'. This feature is especially useful when handling incomplete or unpredictable data from APIs or configurations.
Optional chaining (?.
) in JavaScript is a feature introduced in ES2020 that lets you safely access nested object properties without having to explicitly check if each reference in the chain is valid (i.e., not null
or undefined
).

How It Works
The ?.
operator stops evaluating and returns undefined
as soon as it encounters a null
or undefined
value in the property chain. This prevents runtime errors like "Cannot read property of undefined."
Example Without Optional Chaining:
const user = { name: "John", address: null }; // Without optional chaining, this would throw an error: const city = user.address.city; // TypeError: Cannot read property 'city' of null
With Optional Chaining:
const city = user.address?.city; // undefined — no error console.log(city); // Output: undefined
It only checks whether the value before ?.
is null
or undefined
, and if so, returns undefined
immediately.

Common Use Cases
1. Accessing Nested Object Properties
const user = { profile: { settings: { theme: 'dark' } } }; // Safe access const theme = user.profile?.settings?.theme; // 'dark' const language = user.profile?.preferences?.lang; // undefined (no error)
2. Calling Methods That Might Not Exist
const obj = { someMethod() { return "Hello"; } }; // Safe method call obj.someMethod?.(); // "Hello" obj.missingMethod?.(); // undefined — no error
3. Accessing Array Elements Safely
const users = [{ name: "Alice" }, { name: "Bob" }]; users[0]?.name; // "Alice" users[5]?.name; // undefined — no error
4. With Dynamic Property Keys
const key = 'email'; const email = user.contact?.[key]; // Safe dynamic access
Important Notes
- Optional chaining only works for reading/invoking. You can’t use it on the left-hand side of an assignment.
user?.name = "John"; // ? SyntaxError
- It’s not a replacement for proper data validation — it just prevents crashes during access.
- Always pair it with fallbacks when needed:
const theme = user.preferences?.theme ?? 'light'; // default to 'light'
Basically,
?.
makes your code safer and cleaner when dealing with uncertain object structures. It’s especially useful when working with APIs, configuration objects, or deeply nested data where some parts might be missing.The above is the detailed content of What is optional chaining (?.) in JS?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PlacingtagsatthebottomofablogpostorwebpageservespracticalpurposesforSEO,userexperience,anddesign.1.IthelpswithSEObyallowingsearchenginestoaccesskeyword-relevanttagswithoutclutteringthemaincontent.2.Itimprovesuserexperiencebykeepingthefocusonthearticl

Event capture and bubble are two stages of event propagation in DOM. Capture is from the top layer to the target element, and bubble is from the target element to the top layer. 1. Event capture is implemented by setting the useCapture parameter of addEventListener to true; 2. Event bubble is the default behavior, useCapture is set to false or omitted; 3. Event propagation can be used to prevent event propagation; 4. Event bubbling supports event delegation to improve dynamic content processing efficiency; 5. Capture can be used to intercept events in advance, such as logging or error processing. Understanding these two phases helps to accurately control the timing and how JavaScript responds to user operations.

The main difference between ES module and CommonJS is the loading method and usage scenario. 1.CommonJS is synchronously loaded, suitable for Node.js server-side environment; 2.ES module is asynchronously loaded, suitable for network environments such as browsers; 3. Syntax, ES module uses import/export and must be located in the top-level scope, while CommonJS uses require/module.exports, which can be called dynamically at runtime; 4.CommonJS is widely used in old versions of Node.js and libraries that rely on it such as Express, while ES modules are suitable for modern front-end frameworks and Node.jsv14; 5. Although it can be mixed, it can easily cause problems.

JavaScript's garbage collection mechanism automatically manages memory through a tag-clearing algorithm to reduce the risk of memory leakage. The engine traverses and marks the active object from the root object, and unmarked is treated as garbage and cleared. For example, when the object is no longer referenced (such as setting the variable to null), it will be released in the next round of recycling. Common causes of memory leaks include: ① Uncleared timers or event listeners; ② References to external variables in closures; ③ Global variables continue to hold a large amount of data. The V8 engine optimizes recycling efficiency through strategies such as generational recycling, incremental marking, parallel/concurrent recycling, and reduces the main thread blocking time. During development, unnecessary global references should be avoided and object associations should be promptly decorated to improve performance and stability.

There are three common ways to initiate HTTP requests in Node.js: use built-in modules, axios, and node-fetch. 1. Use the built-in http/https module without dependencies, which is suitable for basic scenarios, but requires manual processing of data stitching and error monitoring, such as using https.get() to obtain data or send POST requests through .write(); 2.axios is a third-party library based on Promise. It has concise syntax and powerful functions, supports async/await, automatic JSON conversion, interceptor, etc. It is recommended to simplify asynchronous request operations; 3.node-fetch provides a style similar to browser fetch, based on Promise and simple syntax

The difference between var, let and const is scope, promotion and repeated declarations. 1.var is the function scope, with variable promotion, allowing repeated declarations; 2.let is the block-level scope, with temporary dead zones, and repeated declarations are not allowed; 3.const is also the block-level scope, and must be assigned immediately, and cannot be reassigned, but the internal value of the reference type can be modified. Use const first, use let when changing variables, and avoid using var.

JavaScript data types are divided into primitive types and reference types. Primitive types include string, number, boolean, null, undefined, and symbol. The values are immutable and copies are copied when assigning values, so they do not affect each other; reference types such as objects, arrays and functions store memory addresses, and variables pointing to the same object will affect each other. Typeof and instanceof can be used to determine types, but pay attention to the historical issues of typeofnull. Understanding these two types of differences can help write more stable and reliable code.

DOM traversal is the basis of web page element operation. Common methods include: 1. Use parentNode to obtain the parent node, and can be chained to find it upward; 2. children return a collection of child elements, accessing the first or end child elements through the index; 3. nextElementSibling obtains the next sibling element, and combines previousElementSibling to realize the same-level navigation. Practical applications such as dynamically modifying structures, interactive effects, etc., such as clicking the button to highlight the next brother node. After mastering these methods, complex operations can be achieved through combination.
