亚洲国产日韩欧美一区二区三区,精品亚洲国产成人av在线,国产99视频精品免视看7,99国产精品久久久久久久成人热,欧美日韩亚洲国产综合乱

Table of Contents
101 Books
Our Creations
We are on Medium
Home Backend Development Python Tutorial owerful Python Libraries for High-Performance Async Web Development

owerful Python Libraries for High-Performance Async Web Development

Jan 21, 2025 am 12:16 AM

owerful Python Libraries for High-Performance Async Web Development

As a prolific author, I encourage you to explore my books on Amazon. Remember to follow me on Medium for continued support. Thank you! Your support is invaluable!

Python's asynchronous capabilities have revolutionized web development. I've had the opportunity to work with several powerful libraries that fully utilize this potential. Let's delve into six key libraries that have significantly impacted asynchronous web development.

FastAPI has quickly become my preferred framework for high-performance API creation. Its speed, user-friendliness, and automatic API documentation are exceptional. FastAPI's use of Python type hints enhances code readability and enables automatic request validation and serialization.

Here's a straightforward FastAPI application example:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def root():
    return {"message": "Hello World"}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

This code establishes a basic API with two endpoints. The item_id parameter's type hinting automatically validates its integer data type.

For both client-side and server-side asynchronous HTTP operations, aiohttp has proven consistently reliable. Its versatility extends from concurrent API requests to building complete web servers.

Here's how to use aiohttp as a client for multiple concurrent requests:

import aiohttp
import asyncio

async def fetch(session, url):
    async with session.get(url) as response:
        return await response.text()

async def main():
    urls = ['http://example.com', 'http://example.org', 'http://example.net']
    async with aiohttp.ClientSession() as session:
        tasks = [fetch(session, url) for url in urls]
        responses = await asyncio.gather(*tasks)
        for url, response in zip(urls, responses):
            print(f"{url}: {len(response)} bytes")

asyncio.run(main())

This script concurrently retrieves content from multiple URLs, showcasing asynchronous operation efficiency.

Sanic has impressed me with its Flask-like simplicity coupled with asynchronous performance. It's designed for developers familiar with Flask, while still leveraging the full potential of asynchronous programming.

A basic Sanic application:

from sanic import Sanic
from sanic.response import json

app = Sanic("MyApp")

@app.route("/")
async def test(request):
    return json({"hello": "world"})

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=8000)

This establishes a simple JSON API endpoint, highlighting Sanic's clear syntax.

Tornado has been a dependable choice for creating scalable, non-blocking web applications. Its integrated networking library is particularly useful for long-polling and WebSockets.

Here's a Tornado WebSocket handler example:

import tornado.ioloop
import tornado.web
import tornado.websocket

class EchoWebSocket(tornado.websocket.WebSocketHandler):
    def open(self):
        print("WebSocket opened")

    def on_message(self, message):
        self.write_message(u"You said: " + message)

    def on_close(self):
        print("WebSocket closed")

if __name__ == "__main__":
    application = tornado.web.Application([
        (r"/websocket", EchoWebSocket),
    ])
    application.listen(8888)
    tornado.ioloop.IOLoop.current().start()

This code sets up a WebSocket server that mirrors received messages.

Quart has been transformative for projects requiring Flask application migration to asynchronous operation without a complete rewrite. Its API closely mirrors Flask's, ensuring a smooth transition.

A simple Quart application:

from quart import Quart, websocket

app = Quart(__name__)

@app.route('/')
async def hello():
    return 'Hello, World!'

@app.websocket('/ws')
async def ws():
    while True:
        data = await websocket.receive()
        await websocket.send(f"echo {data}")

if __name__ == '__main__':
    app.run()

This illustrates both standard and WebSocket routes, showcasing Quart's versatility.

Starlette serves as my preferred foundation for lightweight ASGI frameworks. As the basis for FastAPI, it excels in building high-performance asynchronous web services.

A basic Starlette application:

from starlette.applications import Starlette
from starlette.responses import JSONResponse
from starlette.routing import Route

async def homepage(request):
    return JSONResponse({'hello': 'world'})

app = Starlette(debug=True, routes=[
    Route('/', homepage),
])

This sets up a simple JSON API, highlighting Starlette's minimalist design.

Working with these asynchronous libraries has taught me several best practices for improved application performance and reliability.

For long-running tasks, background tasks or job queues are essential to prevent blocking the main event loop. Here's an example using FastAPI's BackgroundTasks:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def root():
    return {"message": "Hello World"}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

This schedules log writing asynchronously, allowing immediate API response.

For database operations, asynchronous database drivers are crucial. Libraries like asyncpg (PostgreSQL) and motor (MongoDB) are invaluable.

When interacting with external APIs, asynchronous HTTP clients with proper error handling and retries are essential.

Regarding performance, FastAPI and Sanic generally offer superior raw performance for simple APIs. However, framework selection often depends on project needs and team familiarity.

FastAPI excels with automatic API documentation and request validation. Aiohttp provides greater control over HTTP client/server behavior. Sanic offers Flask-like simplicity with asynchronous capabilities. Tornado's integrated networking library is ideal for WebSockets and long-polling. Quart facilitates migrating Flask applications to asynchronous operation. Starlette is excellent for building custom frameworks or lightweight ASGI servers.

In summary, these six libraries have significantly enhanced my ability to build efficient, high-performance asynchronous web applications in Python. Each possesses unique strengths, and the optimal choice depends on the project's specific requirements. By utilizing these tools and adhering to asynchronous best practices, I've created highly concurrent, responsive, and scalable web applications.


101 Books

101 Books is an AI-powered publishing company co-founded by author Aarav Joshi. Our advanced AI technology keeps publishing costs exceptionally low—some books are priced as low as $4—making quality knowledge accessible to all.

Discover our book Golang Clean Code on Amazon.

Stay updated on our latest news. When searching for books, look for Aarav Joshi to find more titles. Use the provided link for special discounts!

Our Creations

Explore our creations:

Investor Central | Investor Central Spanish | Investor Central German | Smart Living | Epochs & Echoes | Puzzling Mysteries | Hindutva | Elite Dev | JS Schools


We are on Medium

Tech Koala Insights | Epochs & Echoes World | Investor Central Medium | Puzzling Mysteries Medium | Science & Epochs Medium | Modern Hindutva

The above is the detailed content of owerful Python Libraries for High-Performance Async Web Development. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Polymorphism in python classes Polymorphism in python classes Jul 05, 2025 am 02:58 AM

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

Python Function Arguments and Parameters Python Function Arguments and Parameters Jul 04, 2025 am 03:26 AM

Parameters are placeholders when defining a function, while arguments are specific values ??passed in when calling. 1. Position parameters need to be passed in order, and incorrect order will lead to errors in the result; 2. Keyword parameters are specified by parameter names, which can change the order and improve readability; 3. Default parameter values ??are assigned when defined to avoid duplicate code, but variable objects should be avoided as default values; 4. args and *kwargs can handle uncertain number of parameters and are suitable for general interfaces or decorators, but should be used with caution to maintain readability.

Explain Python generators and iterators. Explain Python generators and iterators. Jul 05, 2025 am 02:55 AM

Iterators are objects that implement __iter__() and __next__() methods. The generator is a simplified version of iterators, which automatically implement these methods through the yield keyword. 1. The iterator returns an element every time he calls next() and throws a StopIteration exception when there are no more elements. 2. The generator uses function definition to generate data on demand, saving memory and supporting infinite sequences. 3. Use iterators when processing existing sets, use a generator when dynamically generating big data or lazy evaluation, such as loading line by line when reading large files. Note: Iterable objects such as lists are not iterators. They need to be recreated after the iterator reaches its end, and the generator can only traverse it once.

Python `@classmethod` decorator explained Python `@classmethod` decorator explained Jul 04, 2025 am 03:26 AM

A class method is a method defined in Python through the @classmethod decorator. Its first parameter is the class itself (cls), which is used to access or modify the class state. It can be called through a class or instance, which affects the entire class rather than a specific instance; for example, in the Person class, the show_count() method counts the number of objects created; when defining a class method, you need to use the @classmethod decorator and name the first parameter cls, such as the change_var(new_value) method to modify class variables; the class method is different from the instance method (self parameter) and static method (no automatic parameters), and is suitable for factory methods, alternative constructors, and management of class variables. Common uses include:

How to handle API authentication in Python How to handle API authentication in Python Jul 13, 2025 am 02:22 AM

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

What are Python magic methods or dunder methods? What are Python magic methods or dunder methods? Jul 04, 2025 am 03:20 AM

Python's magicmethods (or dunder methods) are special methods used to define the behavior of objects, which start and end with a double underscore. 1. They enable objects to respond to built-in operations, such as addition, comparison, string representation, etc.; 2. Common use cases include object initialization and representation (__init__, __repr__, __str__), arithmetic operations (__add__, __sub__, __mul__) and comparison operations (__eq__, ___lt__); 3. When using it, make sure that their behavior meets expectations. For example, __repr__ should return expressions of refactorable objects, and arithmetic methods should return new instances; 4. Overuse or confusing things should be avoided.

How does Python memory management work? How does Python memory management work? Jul 04, 2025 am 03:26 AM

Pythonmanagesmemoryautomaticallyusingreferencecountingandagarbagecollector.Referencecountingtrackshowmanyvariablesrefertoanobject,andwhenthecountreacheszero,thememoryisfreed.However,itcannothandlecircularreferences,wheretwoobjectsrefertoeachotherbuta

Describe Python garbage collection in Python. Describe Python garbage collection in Python. Jul 03, 2025 am 02:07 AM

Python's garbage collection mechanism automatically manages memory through reference counting and periodic garbage collection. Its core method is reference counting, which immediately releases memory when the number of references of an object is zero; but it cannot handle circular references, so a garbage collection module (gc) is introduced to detect and clean the loop. Garbage collection is usually triggered when the reference count decreases during program operation, the allocation and release difference exceeds the threshold, or when gc.collect() is called manually. Users can turn off automatic recycling through gc.disable(), manually execute gc.collect(), and adjust thresholds to achieve control through gc.set_threshold(). Not all objects participate in loop recycling. If objects that do not contain references are processed by reference counting, it is built-in

See all articles