


Project Mata Kuliah Artificial Intelligence?-?Face Expression Recognition
Dec 29, 2024 pm 05:19 PMShort Explanation
The "Face Expression Recognition" project aims to recognize human facial expressions using the Convolutional Neural Network (CNN) method. The CNN algorithm is applied to analyze visual data such as facial images in grayscale format, which are then classified into seven basic expression categories: happy, sad, angry, surprised, afraid, disgusted, and neutral. This model was trained using the FER2013 dataset and managed to achieve an accuracy of 91.67% after training for 500 epochs.
Project Goals
This "Face Expression Recognition" project is the final project of the Artificial Intelligence course where in this project there are achievements that must be achieved including:
- Developing an artificial intelligence-based facial expression recognition system. This system is expected to be able to identify emotions radiating from facial expressions automatically and accurately.
- Experiment with machine learning algorithms to improve facial expression recognition accuracy. In this project, the CNN algorithm is tested to understand the extent to which this model is able to recognize complex patterns in facial images. This effort also includes optimizing model parameters, adding training data, and using data augmentation methods.
Tech Stack?Used
- Framework: Python uses libraries such as TensorFlow/Keras for CNN implementation.
- Dataset: The dataset used is FER2013 (Facial Expression Recognition 2013), which contains 35,887 grayscale images of faces with dimensions of 48x48 pixels. These images come with labels covering seven basic expression categories.
- Tools:?
- NumPy and Pandas for data manipulation.
- Matplotlib for visualization.
- Haar Cascade for face detection from camera.
Results
- Happy
- Sad
- Angry
- Neutral
- Surprised
- Afraid
- Disgusting
The Problems and How I Deal With?It
The problem of differences in lighting which affects the level of accuracy.?
Lighting variations can affect model accuracy. To overcome this, data normalization is carried out to ensure that the lighting in the image is more uniform so that patterns in facial images can be recognized better.Similar complexity of expressions.
Some expressions, such as “scared” and “surprised,” have similar characteristics that are difficult for the model to differentiate. The solution implemented is to carry out data augmentation such as rotation, zooming, flipping, and contrast changes to increase the generalization ability of the model to new data.Quite limited dataset
The FER2013 dataset, although quite large, does not cover the full range of face variations globally. To enrich the dataset, I used data augmentation techniques and added data from other relevant sources to create a better representation of facial expressions.
Lessons Learned
This project provides deep insight into how artificial intelligence-based systems can be used to recognize facial expressions. The development process shows the importance of:
- Data pre-processing to address lighting issues and improve data quality.
- Experiment training parameters to get the optimal combination, such as setting the number of epochs, learning rate, and batch size.
- Increased diversity of training data through augmentation to improve model performance against real-world data.
By overcoming existing challenges, this project succeeded in building a facial expression recognition model that can be applied to various applications such as human-computer interaction, emotion analysis, and psychological monitoring.
The above is the detailed content of Project Mata Kuliah Artificial Intelligence?-?Face Expression Recognition. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

Parameters are placeholders when defining a function, while arguments are specific values ??passed in when calling. 1. Position parameters need to be passed in order, and incorrect order will lead to errors in the result; 2. Keyword parameters are specified by parameter names, which can change the order and improve readability; 3. Default parameter values ??are assigned when defined to avoid duplicate code, but variable objects should be avoided as default values; 4. args and *kwargs can handle uncertain number of parameters and are suitable for general interfaces or decorators, but should be used with caution to maintain readability.

Iterators are objects that implement __iter__() and __next__() methods. The generator is a simplified version of iterators, which automatically implement these methods through the yield keyword. 1. The iterator returns an element every time he calls next() and throws a StopIteration exception when there are no more elements. 2. The generator uses function definition to generate data on demand, saving memory and supporting infinite sequences. 3. Use iterators when processing existing sets, use a generator when dynamically generating big data or lazy evaluation, such as loading line by line when reading large files. Note: Iterable objects such as lists are not iterators. They need to be recreated after the iterator reaches its end, and the generator can only traverse it once.

A class method is a method defined in Python through the @classmethod decorator. Its first parameter is the class itself (cls), which is used to access or modify the class state. It can be called through a class or instance, which affects the entire class rather than a specific instance; for example, in the Person class, the show_count() method counts the number of objects created; when defining a class method, you need to use the @classmethod decorator and name the first parameter cls, such as the change_var(new_value) method to modify class variables; the class method is different from the instance method (self parameter) and static method (no automatic parameters), and is suitable for factory methods, alternative constructors, and management of class variables. Common uses include:

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

Python's magicmethods (or dunder methods) are special methods used to define the behavior of objects, which start and end with a double underscore. 1. They enable objects to respond to built-in operations, such as addition, comparison, string representation, etc.; 2. Common use cases include object initialization and representation (__init__, __repr__, __str__), arithmetic operations (__add__, __sub__, __mul__) and comparison operations (__eq__, ___lt__); 3. When using it, make sure that their behavior meets expectations. For example, __repr__ should return expressions of refactorable objects, and arithmetic methods should return new instances; 4. Overuse or confusing things should be avoided.

Pythonmanagesmemoryautomaticallyusingreferencecountingandagarbagecollector.Referencecountingtrackshowmanyvariablesrefertoanobject,andwhenthecountreacheszero,thememoryisfreed.However,itcannothandlecircularreferences,wheretwoobjectsrefertoeachotherbuta

Python's garbage collection mechanism automatically manages memory through reference counting and periodic garbage collection. Its core method is reference counting, which immediately releases memory when the number of references of an object is zero; but it cannot handle circular references, so a garbage collection module (gc) is introduced to detect and clean the loop. Garbage collection is usually triggered when the reference count decreases during program operation, the allocation and release difference exceeds the threshold, or when gc.collect() is called manually. Users can turn off automatic recycling through gc.disable(), manually execute gc.collect(), and adjust thresholds to achieve control through gc.set_threshold(). Not all objects participate in loop recycling. If objects that do not contain references are processed by reference counting, it is built-in
