Exploring Object-Oriented Programming (OOP) in JavaScript
Date: December 17, 2024
Object-Oriented Programming (OOP) is a paradigm that uses objects to model real-world entities. JavaScript, being a versatile programming language, provides robust support for OOP through its prototypes, ES6 classes, and modern enhancements. Today, we'll dive deep into the principles and features of OOP in JavaScript.
Core Concepts of OOP in JavaScript
1. Objects
Objects are the building blocks of OOP. In JavaScript, an object is a collection of key-value pairs.
Example: Creating Objects
const car = { brand: "Toyota", model: "Corolla", start() { return `${this.brand} ${this.model} is starting.`; } }; console.log(car.start()); // Output: Toyota Corolla is starting.
2. Classes
Classes are blueprints for creating objects. They encapsulate data and behavior. JavaScript introduced the class keyword in ES6.
Example: Creating a Class
class Animal { constructor(name, species) { this.name = name; this.species = species; } makeSound() { return `${this.name} is making a sound.`; } } const dog = new Animal("Buddy", "Dog"); console.log(dog.makeSound()); // Output: Buddy is making a sound.
3. Encapsulation
Encapsulation means bundling data and methods together while restricting direct access to some components. JavaScript achieves this using public, private, and protected members.
Private Fields
Private fields are denoted by a # prefix and are accessible only within the class.
Example: Private Fields
class BankAccount { #balance; constructor(initialBalance) { this.#balance = initialBalance; } deposit(amount) { this.#balance += amount; } getBalance() { return this.#balance; } } const account = new BankAccount(100); account.deposit(50); console.log(account.getBalance()); // Output: 150 // console.log(account.#balance); // Error: Private field '#balance' must be declared in an enclosing class
4. Inheritance
Inheritance allows one class to inherit properties and methods from another class using the extends keyword.
Example: Inheritance
class Vehicle { constructor(brand) { this.brand = brand; } start() { return `${this.brand} vehicle is starting.`; } } class Car extends Vehicle { constructor(brand, model) { super(brand); // Calls the parent class constructor this.model = model; } display() { return `${this.brand} ${this.model} is ready to go.`; } } const myCar = new Car("Tesla", "Model S"); console.log(myCar.display()); // Output: Tesla Model S is ready to go.
5. Polymorphism
Polymorphism allows a subclass to override a method from its parent class to provide a specific implementation.
Example: Method Overriding
class Shape { area() { return "Area is not defined."; } } class Circle extends Shape { constructor(radius) { super(); this.radius = radius; } area() { return Math.PI * this.radius ** 2; } } const circle = new Circle(5); console.log(circle.area()); // Output: 78.53981633974483
6. Abstraction
Abstraction focuses on exposing only essential details while hiding implementation complexities. While JavaScript doesn't have abstract classes natively, you can simulate them.
Example: Simulating Abstraction
class Animal { constructor(name) { if (this.constructor === Animal) { throw new Error("Abstract class cannot be instantiated directly."); } this.name = name; } makeSound() { throw new Error("Abstract method must be implemented."); } } class Dog extends Animal { makeSound() { return "Bark!"; } } const dog = new Dog("Buddy"); console.log(dog.makeSound()); // Output: Bark! // const animal = new Animal("Some Animal"); // Error: Abstract class cannot be instantiated directly.
7. Prototypes and Prototype Chain
JavaScript is a prototype-based language. Every object has an internal link to another object called its prototype.
Example: Prototype Chain
const car = { brand: "Toyota", model: "Corolla", start() { return `${this.brand} ${this.model} is starting.`; } }; console.log(car.start()); // Output: Toyota Corolla is starting.
8. Object Composition vs. Inheritance
Instead of using inheritance, you can compose objects by combining functionalities. This approach avoids the complexities of deep inheritance hierarchies.
Example: Composition
class Animal { constructor(name, species) { this.name = name; this.species = species; } makeSound() { return `${this.name} is making a sound.`; } } const dog = new Animal("Buddy", "Dog"); console.log(dog.makeSound()); // Output: Buddy is making a sound.
Key Principles of OOP
- DRY (Don't Repeat Yourself): Reuse code through classes and inheritance.
- SOLID Principles: Follow best practices for writing scalable and maintainable OOP code.
Real-World Example: User Management System
Step 1: Define a Base Class
class BankAccount { #balance; constructor(initialBalance) { this.#balance = initialBalance; } deposit(amount) { this.#balance += amount; } getBalance() { return this.#balance; } } const account = new BankAccount(100); account.deposit(50); console.log(account.getBalance()); // Output: 150 // console.log(account.#balance); // Error: Private field '#balance' must be declared in an enclosing class
Step 2: Extend Functionality
class Vehicle { constructor(brand) { this.brand = brand; } start() { return `${this.brand} vehicle is starting.`; } } class Car extends Vehicle { constructor(brand, model) { super(brand); // Calls the parent class constructor this.model = model; } display() { return `${this.brand} ${this.model} is ready to go.`; } } const myCar = new Car("Tesla", "Model S"); console.log(myCar.display()); // Output: Tesla Model S is ready to go.
Step 3: Create Instances
class Shape { area() { return "Area is not defined."; } } class Circle extends Shape { constructor(radius) { super(); this.radius = radius; } area() { return Math.PI * this.radius ** 2; } } const circle = new Circle(5); console.log(circle.area()); // Output: 78.53981633974483
Practice Tasks
- Create a class hierarchy for a library management system.
- Implement a BankAccount class with private fields for balance and public methods for deposit and withdrawal.
- Write a Vehicle class with subclasses like Car and Bike demonstrating polymorphism.
Conclusion
OOP in JavaScript provides a powerful way to write clean, modular, and reusable code. By mastering concepts like classes, inheritance, encapsulation, and polymorphism, you'll be well-equipped to build scalable applications. Keep experimenting and applying these concepts to real-world problems to solidify your understanding!
Tomorrow’s Topic: We’ll explore Asynchronous Programming in JavaScript, diving deep into callbacks, promises, and async/await. Stay tuned!
The above is the detailed content of Exploring Object-Oriented Programming (OOP) in JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

JavaScript's garbage collection mechanism automatically manages memory through a tag-clearing algorithm to reduce the risk of memory leakage. The engine traverses and marks the active object from the root object, and unmarked is treated as garbage and cleared. For example, when the object is no longer referenced (such as setting the variable to null), it will be released in the next round of recycling. Common causes of memory leaks include: ① Uncleared timers or event listeners; ② References to external variables in closures; ③ Global variables continue to hold a large amount of data. The V8 engine optimizes recycling efficiency through strategies such as generational recycling, incremental marking, parallel/concurrent recycling, and reduces the main thread blocking time. During development, unnecessary global references should be avoided and object associations should be promptly decorated to improve performance and stability.

There are three common ways to initiate HTTP requests in Node.js: use built-in modules, axios, and node-fetch. 1. Use the built-in http/https module without dependencies, which is suitable for basic scenarios, but requires manual processing of data stitching and error monitoring, such as using https.get() to obtain data or send POST requests through .write(); 2.axios is a third-party library based on Promise. It has concise syntax and powerful functions, supports async/await, automatic JSON conversion, interceptor, etc. It is recommended to simplify asynchronous request operations; 3.node-fetch provides a style similar to browser fetch, based on Promise and simple syntax

JavaScript data types are divided into primitive types and reference types. Primitive types include string, number, boolean, null, undefined, and symbol. The values are immutable and copies are copied when assigning values, so they do not affect each other; reference types such as objects, arrays and functions store memory addresses, and variables pointing to the same object will affect each other. Typeof and instanceof can be used to determine types, but pay attention to the historical issues of typeofnull. Understanding these two types of differences can help write more stable and reliable code.

Hello, JavaScript developers! Welcome to this week's JavaScript news! This week we will focus on: Oracle's trademark dispute with Deno, new JavaScript time objects are supported by browsers, Google Chrome updates, and some powerful developer tools. Let's get started! Oracle's trademark dispute with Deno Oracle's attempt to register a "JavaScript" trademark has caused controversy. Ryan Dahl, the creator of Node.js and Deno, has filed a petition to cancel the trademark, and he believes that JavaScript is an open standard and should not be used by Oracle

Which JavaScript framework is the best choice? The answer is to choose the most suitable one according to your needs. 1.React is flexible and free, suitable for medium and large projects that require high customization and team architecture capabilities; 2. Angular provides complete solutions, suitable for enterprise-level applications and long-term maintenance; 3. Vue is easy to use, suitable for small and medium-sized projects or rapid development. In addition, whether there is an existing technology stack, team size, project life cycle and whether SSR is needed are also important factors in choosing a framework. In short, there is no absolutely the best framework, the best choice is the one that suits your needs.

IIFE (ImmediatelyInvokedFunctionExpression) is a function expression executed immediately after definition, used to isolate variables and avoid contaminating global scope. It is called by wrapping the function in parentheses to make it an expression and a pair of brackets immediately followed by it, such as (function(){/code/})();. Its core uses include: 1. Avoid variable conflicts and prevent duplication of naming between multiple scripts; 2. Create a private scope to make the internal variables invisible; 3. Modular code to facilitate initialization without exposing too many variables. Common writing methods include versions passed with parameters and versions of ES6 arrow function, but note that expressions and ties must be used.

CacheAPI is a tool provided by the browser to cache network requests, which is often used in conjunction with ServiceWorker to improve website performance and offline experience. 1. It allows developers to manually store resources such as scripts, style sheets, pictures, etc.; 2. It can match cache responses according to requests; 3. It supports deleting specific caches or clearing the entire cache; 4. It can implement cache priority or network priority strategies through ServiceWorker listening to fetch events; 5. It is often used for offline support, speed up repeated access speed, preloading key resources and background update content; 6. When using it, you need to pay attention to cache version control, storage restrictions and the difference from HTTP caching mechanism.

Promise is the core mechanism for handling asynchronous operations in JavaScript. Understanding chain calls, error handling and combiners is the key to mastering their applications. 1. The chain call returns a new Promise through .then() to realize asynchronous process concatenation. Each .then() receives the previous result and can return a value or a Promise; 2. Error handling should use .catch() to catch exceptions to avoid silent failures, and can return the default value in catch to continue the process; 3. Combinators such as Promise.all() (successfully successful only after all success), Promise.race() (the first completion is returned) and Promise.allSettled() (waiting for all completions)
