


Boosting Speed and Performance with Advanced Caching in NestJS: How to Use AVL Trees and Redis
Dec 26, 2024 pm 12:15 PMIn today's world, speed and efficiency in responding to requests are of paramount importance for large-scale and high-traffic systems. Online platforms such as e-commerce websites, social networks, and banking services face a massive volume of data and user requests. This high demand not only places a significant load on servers and databases but can also significantly impact the user experience. In this context, implementing a caching system can be an effective solution to improve performance and reduce resource load.
In this article, we explore the implementation of an advanced caching system that combines AVL trees and Redis. This system includes security mechanisms, TTL (Time to Live) management, and integration with Redis to enhance performance and flexibility. The goal is to leverage the advantages of both technologies while mitigating their weaknesses.
Important Note: This article was developed with the assistance of artificial intelligence.
Advantages and Disadvantages of Combining an AVL Tree-Based Caching System with Redis
Advantages:
-
Improved Memory Efficiency:
- Intelligent TTL Management: By using an AVL tree to manage data expiration, memory consumption can be optimized, and the retention of stale data can be prevented. This is particularly useful in scenarios where data changes rapidly and precise expiration is required.
-
Enhanced Security:
- Token Validation: Adding a token-based validation mechanism enhances Redis security. This additional security layer prevents unauthorized access to the cache, thereby strengthening the overall system security.
-
Advanced TTL Management:
- Custom Expiration Policies: AVL trees allow the implementation of more complex and tailored expiration policies that Redis might not support out of the box.
-
Diverse Data Structures:
- Balanced Tree Structure: As a balanced data structure, AVL trees can offer better performance for certain use cases that require fast searches and sorting compared to Redis's default data structures.
-
Increased Flexibility and Customization:
- Greater Customization: Combining the two systems allows for more extensive customization, enabling the development of more precise and application-specific solutions.
Disadvantages:
-
Increased Architectural Complexity:
- Managing Two Caching Systems: Simultaneously using Redis and an AVL tree-based caching system increases architectural complexity and requires coordinated management between the two systems.
-
Increased Time Overhead:
- Additional Latency: Adding an extra caching layer may introduce delays. It is essential to ensure that performance benefits outweigh these potential delays.
-
Data Maintenance and Synchronization:
- Data Consistency: Maintaining consistency and synchronization between Redis and the AVL tree is crucial to prevent data discrepancies, necessitating complex synchronization mechanisms.
-
Higher Development and Maintenance Costs:
- Increased Expenses: Developing and maintaining two caching systems require more resources and diverse expertise, potentially increasing overall project costs.
-
Security Complexity:
- Coordinating Security Policies: Ensuring that security policies are correctly and consistently implemented across both systems can be challenging.
Implementation of the Caching System Using AVL Trees and Redis
Below, we introduce the professional implementation of this caching system. This implementation includes an AVL tree for managing data with TTL capabilities and Redis for fast data storage.
1. AVL Tree with TTL
First, we implement the AVL tree with TTL management capabilities.
// src/utils/avltree.ts export class AVLNode { key: string; value: any; ttl: number; // Expiration time in milliseconds height: number; left: AVLNode | null; right: AVLNode | null; constructor(key: string, value: any, ttl: number) { this.key = key; this.value = value; this.ttl = Date.now() + ttl; this.height = 1; this.left = null; this.right = null; } isExpired(): boolean { return Date.now() > this.ttl; } } export class AVLTree { private root: AVLNode | null; constructor() { this.root = null; } private getHeight(node: AVLNode | null): number { return node ? node.height : 0; } private updateHeight(node: AVLNode): void { node.height = 1 + Math.max(this.getHeight(node.left), this.getHeight(node.right)); } private rotateRight(y: AVLNode): AVLNode { const x = y.left!; y.left = x.right; x.right = y; this.updateHeight(y); this.updateHeight(x); return x; } private rotateLeft(x: AVLNode): AVLNode { const y = x.right!; x.right = y.left; y.left = x; this.updateHeight(x); this.updateHeight(y); return y; } private getBalance(node: AVLNode): number { return node ? this.getHeight(node.left) - this.getHeight(node.right) : 0; } insert(key: string, value: any, ttl: number): void { this.root = this.insertNode(this.root, key, value, ttl); } private insertNode(node: AVLNode | null, key: string, value: any, ttl: number): AVLNode { if (!node) return new AVLNode(key, value, ttl); if (key < node.key) { node.left = this.insertNode(node.left, key, value, ttl); } else if (key > node.key) { node.right = this.insertNode(node.right, key, value, ttl); } else { node.value = value; node.ttl = Date.now() + ttl; return node; } this.updateHeight(node); const balance = this.getBalance(node); // Balancing the tree if (balance > 1 && key < node.left!.key) return this.rotateRight(node); if (balance < -1 && key > node.right!.key) return this.rotateLeft(node); if (balance > 1 && key > node.left!.key) { node.left = this.rotateLeft(node.left!); return this.rotateRight(node); } if (balance < -1 && key < node.right!.key) { node.right = this.rotateRight(node.right!); return this.rotateLeft(node); } return node; } search(key: string): any { let node = this.root; while (node) { if (node.isExpired()) { this.delete(key); return null; } if (key === node.key) return node.value; node = key < node.key ? node.left : node.right; } return null; } delete(key: string): void { this.root = this.deleteNode(this.root, key); } private deleteNode(node: AVLNode | null, key: string): AVLNode | null { if (!node) return null; if (key < node.key) { node.left = this.deleteNode(node.left, key); } else if (key > node.key) { node.right = this.deleteNode(node.right, key); } else { if (!node.left || !node.right) return node.left || node.right; let minLargerNode = node.right; while (minLargerNode.left) minLargerNode = minLargerNode.left; node.key = minLargerNode.key; node.value = minLargerNode.value; node.ttl = minLargerNode.ttl; node.right = this.deleteNode(node.right, minLargerNode.key); } this.updateHeight(node); const balance = this.getBalance(node); if (balance > 1 && this.getBalance(node.left!) >= 0) return this.rotateRight(node); if (balance < -1 && this.getBalance(node.right!) <= 0) return this.rotateLeft(node); if (balance > 1 && this.getBalance(node.left!) < 0) { node.left = this.rotateLeft(node.left!); return this.rotateRight(node); } if (balance < -1 && this.getBalance(node.right!) > 0) { node.right = this.rotateRight(node.right!); return this.rotateLeft(node); } return node; } }
2. Cache Service (CacheService) with Redis Integration
In this section, we implement the cache service that utilizes both the AVL tree and Redis for cache management. Additionally, we incorporate a token validation mechanism.
// src/cache/cache.service.ts import { Injectable, UnauthorizedException, InternalServerErrorException } from '@nestjs/common'; import { AVLTree } from '../utils/avltree'; import { InjectRedis, Redis } from '@nestjs-modules/ioredis'; @Injectable() export class CacheService { private avlTree: AVLTree; private authorizedTokens: Set<string> = new Set(['your_authorized_token']); // Authorized tokens constructor(@InjectRedis() private readonly redis: Redis) { this.avlTree = new AVLTree(); } validateToken(token: string): void { if (!this.authorizedTokens.has(token)) { throw new UnauthorizedException('Invalid access token'); } } async set(key: string, value: any, ttl: number, token: string): Promise<void> { this.validateToken(token); try { // Store in Redis await this.redis.set(key, JSON.stringify(value), 'PX', ttl); // Store in AVL Tree this.avlTree.insert(key, value, ttl); } catch (error) { throw new InternalServerErrorException('Failed to set cache'); } } async get(key: string, token: string): Promise<any> { this.validateToken(token); try { // First, attempt to retrieve from Redis const redisValue = await this.redis.get(key); if (redisValue) { return JSON.parse(redisValue); } // If not found in Redis, retrieve from AVL Tree const avlValue = this.avlTree.search(key); if (avlValue) { // Re-store in Redis for faster access next time // Assuming the remaining TTL is maintained in AVL Tree // For simplicity, we set a new TTL const newTtl = 60000; // 60 seconds as an example await this.redis.set(key, JSON.stringify(avlValue), 'PX', newTtl); return avlValue; } return null; } catch (error) { throw new InternalServerErrorException('Failed to get cache'); } } async delete(key: string, token: string): Promise<void> { this.validateToken(token); try { // Remove from Redis await this.redis.del(key); // Remove from AVL Tree this.avlTree.delete(key); } catch (error) { throw new InternalServerErrorException('Failed to delete cache'); } } }
3. API Controller (CacheController)
The controller manages API requests to the cache service.
// src/cache/cache.controller.ts import { Controller, Get, Post, Delete, Body, Param, Query, HttpCode, HttpStatus } from '@nestjs/common'; import { CacheService } from './cache.service'; class SetCacheDto { key: string; value: any; ttl: number; // milliseconds token: string; } @Controller('cache') export class CacheController { constructor(private readonly cacheService: CacheService) {} @Post('set') @HttpCode(HttpStatus.CREATED) async setCache(@Body() body: SetCacheDto) { await this.cacheService.set(body.key, body.value, body.ttl, body.token); return { message: 'Data cached successfully' }; } @Get('get/:key') async getCache(@Param('key') key: string, @Query('token') token: string) { const value = await this.cacheService.get(key, token); return value ? { value } : { message: 'Key not found or expired' }; } @Delete('delete/:key') @HttpCode(HttpStatus.NO_CONTENT) async deleteCache(@Param('key') key: string, @Query('token') token: string) { await this.cacheService.delete(key, token); return { message: 'Key deleted successfully' }; } }
4. Cache Module (CacheModule)
Defines the cache module that connects the service and controller and injects Redis.
// src/cache/cache.module.ts import { Module } from '@nestjs/common'; import { CacheService } from './cache.service'; import { CacheController } from './cache.controller'; import { RedisModule } from '@nestjs-modules/ioredis'; @Module({ imports: [ RedisModule.forRoot({ config: { host: 'localhost', port: 6379, // Other Redis configurations }, }), ], providers: [CacheService], controllers: [CacheController], }) export class CacheModule {}
5. Redis Configuration
To use Redis in the NestJS project, we utilize the @nestjs-modules/ioredis package. First, install the package:
npm install @nestjs-modules/ioredis ioredis
Then, configure Redis in the CacheModule as shown above. If you require more advanced configurations, you can use separate configuration files.
6. Token Validation Mechanism
For managing and validating tokens, various strategies can be employed. In this simple implementation, tokens are maintained in a fixed set. For larger projects, it is recommended to use JWT (JSON Web Tokens) or other advanced security methods.
7. Error Handling and Input Validation
In this implementation, DTO (Data Transfer Object) classes are used for input validation and error management. Additionally, the cache service utilizes general error handling to prevent unexpected issues.
8. Main Application Module (AppModule)
Finally, we add the cache module to the main application module.
// src/utils/avltree.ts export class AVLNode { key: string; value: any; ttl: number; // Expiration time in milliseconds height: number; left: AVLNode | null; right: AVLNode | null; constructor(key: string, value: any, ttl: number) { this.key = key; this.value = value; this.ttl = Date.now() + ttl; this.height = 1; this.left = null; this.right = null; } isExpired(): boolean { return Date.now() > this.ttl; } } export class AVLTree { private root: AVLNode | null; constructor() { this.root = null; } private getHeight(node: AVLNode | null): number { return node ? node.height : 0; } private updateHeight(node: AVLNode): void { node.height = 1 + Math.max(this.getHeight(node.left), this.getHeight(node.right)); } private rotateRight(y: AVLNode): AVLNode { const x = y.left!; y.left = x.right; x.right = y; this.updateHeight(y); this.updateHeight(x); return x; } private rotateLeft(x: AVLNode): AVLNode { const y = x.right!; x.right = y.left; y.left = x; this.updateHeight(x); this.updateHeight(y); return y; } private getBalance(node: AVLNode): number { return node ? this.getHeight(node.left) - this.getHeight(node.right) : 0; } insert(key: string, value: any, ttl: number): void { this.root = this.insertNode(this.root, key, value, ttl); } private insertNode(node: AVLNode | null, key: string, value: any, ttl: number): AVLNode { if (!node) return new AVLNode(key, value, ttl); if (key < node.key) { node.left = this.insertNode(node.left, key, value, ttl); } else if (key > node.key) { node.right = this.insertNode(node.right, key, value, ttl); } else { node.value = value; node.ttl = Date.now() + ttl; return node; } this.updateHeight(node); const balance = this.getBalance(node); // Balancing the tree if (balance > 1 && key < node.left!.key) return this.rotateRight(node); if (balance < -1 && key > node.right!.key) return this.rotateLeft(node); if (balance > 1 && key > node.left!.key) { node.left = this.rotateLeft(node.left!); return this.rotateRight(node); } if (balance < -1 && key < node.right!.key) { node.right = this.rotateRight(node.right!); return this.rotateLeft(node); } return node; } search(key: string): any { let node = this.root; while (node) { if (node.isExpired()) { this.delete(key); return null; } if (key === node.key) return node.value; node = key < node.key ? node.left : node.right; } return null; } delete(key: string): void { this.root = this.deleteNode(this.root, key); } private deleteNode(node: AVLNode | null, key: string): AVLNode | null { if (!node) return null; if (key < node.key) { node.left = this.deleteNode(node.left, key); } else if (key > node.key) { node.right = this.deleteNode(node.right, key); } else { if (!node.left || !node.right) return node.left || node.right; let minLargerNode = node.right; while (minLargerNode.left) minLargerNode = minLargerNode.left; node.key = minLargerNode.key; node.value = minLargerNode.value; node.ttl = minLargerNode.ttl; node.right = this.deleteNode(node.right, minLargerNode.key); } this.updateHeight(node); const balance = this.getBalance(node); if (balance > 1 && this.getBalance(node.left!) >= 0) return this.rotateRight(node); if (balance < -1 && this.getBalance(node.right!) <= 0) return this.rotateLeft(node); if (balance > 1 && this.getBalance(node.left!) < 0) { node.left = this.rotateLeft(node.left!); return this.rotateRight(node); } if (balance < -1 && this.getBalance(node.right!) > 0) { node.right = this.rotateRight(node.right!); return this.rotateLeft(node); } return node; } }
9. Main Application File (main.ts)
The main application file that bootstraps NestJS.
// src/cache/cache.service.ts import { Injectable, UnauthorizedException, InternalServerErrorException } from '@nestjs/common'; import { AVLTree } from '../utils/avltree'; import { InjectRedis, Redis } from '@nestjs-modules/ioredis'; @Injectable() export class CacheService { private avlTree: AVLTree; private authorizedTokens: Set<string> = new Set(['your_authorized_token']); // Authorized tokens constructor(@InjectRedis() private readonly redis: Redis) { this.avlTree = new AVLTree(); } validateToken(token: string): void { if (!this.authorizedTokens.has(token)) { throw new UnauthorizedException('Invalid access token'); } } async set(key: string, value: any, ttl: number, token: string): Promise<void> { this.validateToken(token); try { // Store in Redis await this.redis.set(key, JSON.stringify(value), 'PX', ttl); // Store in AVL Tree this.avlTree.insert(key, value, ttl); } catch (error) { throw new InternalServerErrorException('Failed to set cache'); } } async get(key: string, token: string): Promise<any> { this.validateToken(token); try { // First, attempt to retrieve from Redis const redisValue = await this.redis.get(key); if (redisValue) { return JSON.parse(redisValue); } // If not found in Redis, retrieve from AVL Tree const avlValue = this.avlTree.search(key); if (avlValue) { // Re-store in Redis for faster access next time // Assuming the remaining TTL is maintained in AVL Tree // For simplicity, we set a new TTL const newTtl = 60000; // 60 seconds as an example await this.redis.set(key, JSON.stringify(avlValue), 'PX', newTtl); return avlValue; } return null; } catch (error) { throw new InternalServerErrorException('Failed to get cache'); } } async delete(key: string, token: string): Promise<void> { this.validateToken(token); try { // Remove from Redis await this.redis.del(key); // Remove from AVL Tree this.avlTree.delete(key); } catch (error) { throw new InternalServerErrorException('Failed to delete cache'); } } }
10. Testing and Running the Application
After implementing all components, you can run the application to ensure its functionality.
// src/cache/cache.controller.ts import { Controller, Get, Post, Delete, Body, Param, Query, HttpCode, HttpStatus } from '@nestjs/common'; import { CacheService } from './cache.service'; class SetCacheDto { key: string; value: any; ttl: number; // milliseconds token: string; } @Controller('cache') export class CacheController { constructor(private readonly cacheService: CacheService) {} @Post('set') @HttpCode(HttpStatus.CREATED) async setCache(@Body() body: SetCacheDto) { await this.cacheService.set(body.key, body.value, body.ttl, body.token); return { message: 'Data cached successfully' }; } @Get('get/:key') async getCache(@Param('key') key: string, @Query('token') token: string) { const value = await this.cacheService.get(key, token); return value ? { value } : { message: 'Key not found or expired' }; } @Delete('delete/:key') @HttpCode(HttpStatus.NO_CONTENT) async deleteCache(@Param('key') key: string, @Query('token') token: string) { await this.cacheService.delete(key, token); return { message: 'Key deleted successfully' }; } }
11. Sample Requests
Set Cache:
// src/cache/cache.module.ts import { Module } from '@nestjs/common'; import { CacheService } from './cache.service'; import { CacheController } from './cache.controller'; import { RedisModule } from '@nestjs-modules/ioredis'; @Module({ imports: [ RedisModule.forRoot({ config: { host: 'localhost', port: 6379, // Other Redis configurations }, }), ], providers: [CacheService], controllers: [CacheController], }) export class CacheModule {}
Get Cache:
npm install @nestjs-modules/ioredis ioredis
Delete Cache:
// src/app.module.ts import { Module } from '@nestjs/common'; import { CacheModule } from './cache/cache.module'; @Module({ imports: [CacheModule], controllers: [], providers: [], }) export class AppModule {}
Suitable Use Cases for Combining Redis and AVL Tree-Based Caching Systems
-
Banking and Financial Systems:
- Managing Sensitive Sessions and Transactions: High security and precise TTL management are essential for sensitive financial data. Combining token security and intelligent TTL management is highly beneficial in this domain.
-
High-Traffic E-commerce Platforms:
- Storing Product Data and Managing Shopping Carts: Optimizing memory and increasing data access speed are crucial for enhancing user experience in large online stores like Amazon.
-
Messaging and Social Networking Applications:
- Storing Real-Time User Statuses: Fast access and precise data management are required to display users' online/offline statuses and messages.
-
Weather and Currency Exchange Applications:
- API Caching to Reduce Request Load: Storing results of complex computations and live data with precise expiration management to provide up-to-date and fast information to users.
-
Content Management Systems and Media Platforms:
- Caching High-Traffic Pages and Content: Optimizing access to highly viewed content and reducing server load to provide a smoother user experience.
-
Analytical Applications and Real-Time Dashboards:
- Storing Immediate Analysis Results: Providing fast and up-to-date analytical data using multiple caches to enhance performance and result accuracy.
Conclusion
In this article, we implemented an advanced caching system using AVL trees and Redis within the NestJS framework. This system, offering advanced TTL management, token-based security, and Redis integration, provides a robust and flexible solution for high-demand applications. The combination of these two technologies leverages the strengths of both, addressing Redis's weaknesses and enhancing overall caching performance.
The above is the detailed content of Boosting Speed and Performance with Advanced Caching in NestJS: How to Use AVL Trees and Redis. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PlacingtagsatthebottomofablogpostorwebpageservespracticalpurposesforSEO,userexperience,anddesign.1.IthelpswithSEObyallowingsearchenginestoaccesskeyword-relevanttagswithoutclutteringthemaincontent.2.Itimprovesuserexperiencebykeepingthefocusonthearticl

Event capture and bubble are two stages of event propagation in DOM. Capture is from the top layer to the target element, and bubble is from the target element to the top layer. 1. Event capture is implemented by setting the useCapture parameter of addEventListener to true; 2. Event bubble is the default behavior, useCapture is set to false or omitted; 3. Event propagation can be used to prevent event propagation; 4. Event bubbling supports event delegation to improve dynamic content processing efficiency; 5. Capture can be used to intercept events in advance, such as logging or error processing. Understanding these two phases helps to accurately control the timing and how JavaScript responds to user operations.

The main difference between ES module and CommonJS is the loading method and usage scenario. 1.CommonJS is synchronously loaded, suitable for Node.js server-side environment; 2.ES module is asynchronously loaded, suitable for network environments such as browsers; 3. Syntax, ES module uses import/export and must be located in the top-level scope, while CommonJS uses require/module.exports, which can be called dynamically at runtime; 4.CommonJS is widely used in old versions of Node.js and libraries that rely on it such as Express, while ES modules are suitable for modern front-end frameworks and Node.jsv14; 5. Although it can be mixed, it can easily cause problems.

JavaScript's garbage collection mechanism automatically manages memory through a tag-clearing algorithm to reduce the risk of memory leakage. The engine traverses and marks the active object from the root object, and unmarked is treated as garbage and cleared. For example, when the object is no longer referenced (such as setting the variable to null), it will be released in the next round of recycling. Common causes of memory leaks include: ① Uncleared timers or event listeners; ② References to external variables in closures; ③ Global variables continue to hold a large amount of data. The V8 engine optimizes recycling efficiency through strategies such as generational recycling, incremental marking, parallel/concurrent recycling, and reduces the main thread blocking time. During development, unnecessary global references should be avoided and object associations should be promptly decorated to improve performance and stability.

There are three common ways to initiate HTTP requests in Node.js: use built-in modules, axios, and node-fetch. 1. Use the built-in http/https module without dependencies, which is suitable for basic scenarios, but requires manual processing of data stitching and error monitoring, such as using https.get() to obtain data or send POST requests through .write(); 2.axios is a third-party library based on Promise. It has concise syntax and powerful functions, supports async/await, automatic JSON conversion, interceptor, etc. It is recommended to simplify asynchronous request operations; 3.node-fetch provides a style similar to browser fetch, based on Promise and simple syntax

The difference between var, let and const is scope, promotion and repeated declarations. 1.var is the function scope, with variable promotion, allowing repeated declarations; 2.let is the block-level scope, with temporary dead zones, and repeated declarations are not allowed; 3.const is also the block-level scope, and must be assigned immediately, and cannot be reassigned, but the internal value of the reference type can be modified. Use const first, use let when changing variables, and avoid using var.

JavaScript data types are divided into primitive types and reference types. Primitive types include string, number, boolean, null, undefined, and symbol. The values are immutable and copies are copied when assigning values, so they do not affect each other; reference types such as objects, arrays and functions store memory addresses, and variables pointing to the same object will affect each other. Typeof and instanceof can be used to determine types, but pay attention to the historical issues of typeofnull. Understanding these two types of differences can help write more stable and reliable code.

DOM traversal is the basis of web page element operation. Common methods include: 1. Use parentNode to obtain the parent node, and can be chained to find it upward; 2. children return a collection of child elements, accessing the first or end child elements through the index; 3. nextElementSibling obtains the next sibling element, and combines previousElementSibling to realize the same-level navigation. Practical applications such as dynamically modifying structures, interactive effects, etc., such as clicking the button to highlight the next brother node. After mastering these methods, complex operations can be achieved through combination.
