Secure Text Encryption and Decryption with Vanilla JavaScript
Dec 08, 2024 am 03:37 AMIn today’s digital age, securing sensitive information like API keys, passwords, and user data is more critical than ever. A robust encryption and decryption strategy can prevent unauthorized access and ensure data confidentiality. In this blog post, we’ll explore how to encrypt and decrypt text using vanilla JavaScript, leveraging the Web Crypto API for a modern, secure approach.
Why Use Encryption?
Encryption transforms readable data (plaintext) into a scrambled format (ciphertext) that can only be read if decrypted with the correct key. This ensures that even if someone intercepts the encrypted data, it remains meaningless without the key. A solid encryption mechanism protects:
- API keys stored in your frontend code.
- Sensitive user information.
- Any data transferred over insecure channels.
Let’s dive into how you can implement this securely in JavaScript.
Encryption and Decryption Using AES-GCM
We’ll use AES-GCM (Advanced Encryption Standard - Galois/Counter Mode), a modern standard that provides both encryption and integrity verification. The steps involve:
- Password Derivation: Use PBKDF2 (Password-Based Key Derivation Function 2) to derive a secure key from a password.
- Salt and IV: Generate a random salt (to make the password derivation unique) and iv (Initialization Vector) for each encryption.
- Encryption: Encrypt the plaintext using AES-GCM.
- Decryption: Decrypt the ciphertext using the same password and salt/iv.
Code Implementation
Here is the complete JavaScript implementation.
Utilities for Conversion
We’ll convert between ArrayBuffer and hexadecimal for easy data storage and retrieval:
function arrayBufferToHex(buffer) { return [...new Uint8Array(buffer)] .map(byte => byte.toString(16).padStart(2, '0')) .join(''); } function hexToArrayBuffer(hex) { const bytes = new Uint8Array(hex.length / 2); for (let i = 0; i < hex.length; i += 2) { bytes[i / 2] = parseInt(hex.substr(i, 2), 16); } return bytes.buffer; }
Key Derivation from Password
Use PBKDF2 to derive a strong encryption key:
async function getCryptoKey(password) { const encoder = new TextEncoder(); const keyMaterial = encoder.encode(password); return crypto.subtle.importKey( 'raw', keyMaterial, { name: 'PBKDF2' }, false, ['deriveKey'] ); } async function deriveKey(password, salt) { const keyMaterial = await getCryptoKey(password); return crypto.subtle.deriveKey( { name: 'PBKDF2', salt: salt, iterations: 100000, hash: 'SHA-256' }, keyMaterial, { name: 'AES-GCM', length: 256 }, false, ['encrypt', 'decrypt'] ); }
Encryption Function
Encrypt text with a password:
async function encryptText(text, password) { const encoder = new TextEncoder(); const salt = crypto.getRandomValues(new Uint8Array(16)); const iv = crypto.getRandomValues(new Uint8Array(12)); const key = await deriveKey(password, salt); const encrypted = await crypto.subtle.encrypt( { name: 'AES-GCM', iv: iv }, key, encoder.encode(text) ); return { cipherText: arrayBufferToHex(encrypted), iv: arrayBufferToHex(iv), salt: arrayBufferToHex(salt) }; }
Decryption Function
Decrypt text with the same password:
async function decryptText(encryptedData, password) { const { cipherText, iv, salt } = encryptedData; const key = await deriveKey(password, hexToArrayBuffer(salt)); const decrypted = await crypto.subtle.decrypt( { name: 'AES-GCM', iv: hexToArrayBuffer(iv) }, key, hexToArrayBuffer(cipherText) ); const decoder = new TextDecoder(); return decoder.decode(decrypted); }
Example Usage
Let’s see how to use these functions:
function arrayBufferToHex(buffer) { return [...new Uint8Array(buffer)] .map(byte => byte.toString(16).padStart(2, '0')) .join(''); } function hexToArrayBuffer(hex) { const bytes = new Uint8Array(hex.length / 2); for (let i = 0; i < hex.length; i += 2) { bytes[i / 2] = parseInt(hex.substr(i, 2), 16); } return bytes.buffer; }
Security Best Practices
- Use a Strong Password: The encryption is only as secure as the password you use.
- Store Salt and IV Safely: Always save the salt and iv alongside your encrypted data.
- Avoid Hardcoding Secrets: Never hardcode sensitive data or passwords in your codebase.
- Use HTTPS: Ensure your application uses HTTPS to protect data in transit.
Encrypting sensitive information like API keys is a fundamental step in securing your applications. I use this for API keys mostly.
The above is the detailed content of Secure Text Encryption and Decryption with Vanilla JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

JavaScript's garbage collection mechanism automatically manages memory through a tag-clearing algorithm to reduce the risk of memory leakage. The engine traverses and marks the active object from the root object, and unmarked is treated as garbage and cleared. For example, when the object is no longer referenced (such as setting the variable to null), it will be released in the next round of recycling. Common causes of memory leaks include: ① Uncleared timers or event listeners; ② References to external variables in closures; ③ Global variables continue to hold a large amount of data. The V8 engine optimizes recycling efficiency through strategies such as generational recycling, incremental marking, parallel/concurrent recycling, and reduces the main thread blocking time. During development, unnecessary global references should be avoided and object associations should be promptly decorated to improve performance and stability.

There are three common ways to initiate HTTP requests in Node.js: use built-in modules, axios, and node-fetch. 1. Use the built-in http/https module without dependencies, which is suitable for basic scenarios, but requires manual processing of data stitching and error monitoring, such as using https.get() to obtain data or send POST requests through .write(); 2.axios is a third-party library based on Promise. It has concise syntax and powerful functions, supports async/await, automatic JSON conversion, interceptor, etc. It is recommended to simplify asynchronous request operations; 3.node-fetch provides a style similar to browser fetch, based on Promise and simple syntax

JavaScript data types are divided into primitive types and reference types. Primitive types include string, number, boolean, null, undefined, and symbol. The values are immutable and copies are copied when assigning values, so they do not affect each other; reference types such as objects, arrays and functions store memory addresses, and variables pointing to the same object will affect each other. Typeof and instanceof can be used to determine types, but pay attention to the historical issues of typeofnull. Understanding these two types of differences can help write more stable and reliable code.

Hello, JavaScript developers! Welcome to this week's JavaScript news! This week we will focus on: Oracle's trademark dispute with Deno, new JavaScript time objects are supported by browsers, Google Chrome updates, and some powerful developer tools. Let's get started! Oracle's trademark dispute with Deno Oracle's attempt to register a "JavaScript" trademark has caused controversy. Ryan Dahl, the creator of Node.js and Deno, has filed a petition to cancel the trademark, and he believes that JavaScript is an open standard and should not be used by Oracle

Which JavaScript framework is the best choice? The answer is to choose the most suitable one according to your needs. 1.React is flexible and free, suitable for medium and large projects that require high customization and team architecture capabilities; 2. Angular provides complete solutions, suitable for enterprise-level applications and long-term maintenance; 3. Vue is easy to use, suitable for small and medium-sized projects or rapid development. In addition, whether there is an existing technology stack, team size, project life cycle and whether SSR is needed are also important factors in choosing a framework. In short, there is no absolutely the best framework, the best choice is the one that suits your needs.

IIFE (ImmediatelyInvokedFunctionExpression) is a function expression executed immediately after definition, used to isolate variables and avoid contaminating global scope. It is called by wrapping the function in parentheses to make it an expression and a pair of brackets immediately followed by it, such as (function(){/code/})();. Its core uses include: 1. Avoid variable conflicts and prevent duplication of naming between multiple scripts; 2. Create a private scope to make the internal variables invisible; 3. Modular code to facilitate initialization without exposing too many variables. Common writing methods include versions passed with parameters and versions of ES6 arrow function, but note that expressions and ties must be used.

CacheAPI is a tool provided by the browser to cache network requests, which is often used in conjunction with ServiceWorker to improve website performance and offline experience. 1. It allows developers to manually store resources such as scripts, style sheets, pictures, etc.; 2. It can match cache responses according to requests; 3. It supports deleting specific caches or clearing the entire cache; 4. It can implement cache priority or network priority strategies through ServiceWorker listening to fetch events; 5. It is often used for offline support, speed up repeated access speed, preloading key resources and background update content; 6. When using it, you need to pay attention to cache version control, storage restrictions and the difference from HTTP caching mechanism.

Promise is the core mechanism for handling asynchronous operations in JavaScript. Understanding chain calls, error handling and combiners is the key to mastering their applications. 1. The chain call returns a new Promise through .then() to realize asynchronous process concatenation. Each .then() receives the previous result and can return a value or a Promise; 2. Error handling should use .catch() to catch exceptions to avoid silent failures, and can return the default value in catch to continue the process; 3. Combinators such as Promise.all() (successfully successful only after all success), Promise.race() (the first completion is returned) and Promise.allSettled() (waiting for all completions)
