Ziel
Das Ziel dieses Miniprojekts/Tutorials ist es, mit minimalen Komponenten einen supereinfachen HR-Monitor und eine scrollende EKG-Anzeige zu erstellen.
Anforderungen:
- Python
- Audio-Schnittstelle
- 1/4"-Kabel/Gitarrenkabel/Instrumentenkabel (es muss nur über das Audio-Interface in den Computer gelangen)
Kurzer Hintergrund
Die Muskeln im Herzen erzeugen elektrische Signale. Einige dieser Signale sind auf der Hautoberfl?che erkennbar.
Wir k?nnen diese Signale mithilfe von Oberfl?chenelektroden erfassen. Das Problem ist, dass dies nicht die einzigen elektrischen Signale auf der Haut sind. Glücklicherweise sind die meisten Signale, die wir sehen m?chten, auf etwa 1-40 Hz ??beschr?nkt.
Prozess
Wir nehmen unser 1/4-Zoll-Kabel, das als unsere Elektrode dient, und stechen es in der N?he des Herzens in unsere Haut. Anschlie?end verwenden wir die USB-Audioschnittstelle, um das analoge Signal zu verst?rken und in ein digitales umzuwandeln . Schlie?lich filtern und zeigen wir in Python an
Schritte
Schritt 1: Ein 1/4-Zoll-Kabel besteht aus zwei Teilen, der Hülse und der Spitze. Beide Teile müssen Kontakt mit Ihrer Haut haben – halten Sie einfach die Hülse mit der Hand fest und drücken Sie sie gegen die Haut Linke Seite Ihrer Brust/oberer Brustkorb (einige Kabel haben m?glicherweise mehr Kan?le, stellen Sie einfach sicher, dass sie alle Kontakt haben, um zu starten). Passen Sie die Verst?rkung am Audio-Interface an (ich drehe meine ganz nach oben).
Schritt 2: Führen Sie den folgenden Code aus. Stellen Sie sicher, dass die Zeile ?input_device_index“ auf Ihr Audio-Interface zeigt. Was wir tun, ist, Teile des eingehenden Audios zu nehmen, sie mit fft in den Frequenzbereich zu konvertieren, alle unn?tigen Frequenzen auf 0 zu setzen und dann wieder in den Zeitbereich zu konvertieren. Als n?chstes suchen wir die Spitzen, um die Herzfrequenz zu berechnen, und zeichnen sie dann in einer scrollbaren Form auf.
import numpy as np import pyaudio as pa import struct import matplotlib.pyplot as plt from scipy.signal import decimate, find_peaks CHUNK = 4410 #.1 second FORMAT = pa.paInt16 CHANNELS = 1 RATE = 44100 # in Hz fstep = RATE/CHUNK p = pa.PyAudio() values = [] dsf=44 #down sample factor rds=RATE/dsf #down sampled rate stream = p.open( format = FORMAT, channels = CHANNELS, rate = RATE, input_device_index=3, #adjust based on input input=True, frames_per_buffer=CHUNK ) #set up graph fig,ax = plt.subplots(1) x = np.arange(0,2*CHUNK,2) line, = ax.plot(x, np.random.rand(CHUNK)) ax.set_ylim(-100,100) ax.set_xlim(0,2500) text = ax.text(0.05, 0.95, str(0), transform=ax.transAxes, fontsize=14, verticalalignment='top') fig.show() def getFiltered(x,hp=1,lp=41): #this sets the unneeded freqs to 0 fft=np.fft.fft(x) hptrim=len(fft)/RATE*hp lptrim=len(fft)/RATE*lp fft[int(lptrim):-int(lptrim)]=0 fft[0:int(hptrim)]=0 return np.real(np.fft.ifft(fft)) def getHR(x): pdis = int(0.6 * rds) #minimum distance between peaks. stops rapid triggering. also caps max hr, so adjust peaks, _ = find_peaks(x, distance=pdis, height=0.1) intervals = np.diff(peaks)/rds # in seconds hr = 60 / intervals # in BPM return peaks,round(np.mean(hr),0) #peaks,avg hr while 1: data = stream.read(CHUNK) dataInt = struct.unpack(str(CHUNK) + 'h', data) filtered=getFiltered(dataInt) #filter (working with full chunk) dsed=decimate(filtered, 44) #down sample (turns chunk into ds chunk) values=np.concatenate((values,dsed)) #puts the chunks into an array peaks,hr = getHR(values*-1) # gets the peaks and determins avg HR. text.set_text(str(hr)) line.set_xdata(np.arange(len(values))) line.set_ydata(values*-10) #the negative is bc it comes in upside down with my set up. the *10 is just for fun ax.set_xlim(max(0,len(values)-2500),len(values)) #keep the graph scrolling vlines = ax.vlines(peaks,ymin=-100,ymax=100,colors='red', linestyles='dashed') # pop some lines at the peaks fig.canvas.draw() fig.canvas.flush_events() vlines.remove() if len(values)>10000: #keeps the array managably sized, and graph scrolling pretty values=values[5000:] #5 seconds @ ~1000 sr.
Notizen
Halten Sie das Kabel ruhig – m?glicherweise müssen Sie nach der Bewegung einige Sekunden warten, um eine genaue Herzfrequenz zu erhalten. Ich habe es mit meiner Garmin-Uhr verglichen und es wurden durchweg ?hnliche Werte zurückgegeben.
Ausgabe
Haftungsausschluss
Denken Sie daran, dass Sie
Ihren K?rper technisch gesehen zu einem Teil des Kreislaufs machen. Das Kabel wird an die Schnittstelle angeschlossen, die mit dem Computer verbunden ist, der an die Steckdose angeschlossen ist... Versuchen Sie dies auf eigene Gefahr. Ich bin kein Experte – ich spiele einfach gerne mit Dingen herum und wollte sie teilen.
N?chste Schritte
Diese Methode funktioniert nicht wirklich gut, um alle verschiedenen Teile eines EKG-Signals sauber zu erkennen. Die Elektrode ist stark abgenutzt und ich habe nur minimal gefiltert.
Von hier aus k?nnen Sie tiefer in die Software eintauchen und mit zus?tzlichen Filtern herumspielen oder einen tats?chlichen Schaltkreis erstellen und echte Elektroden verwenden. Eine Tüte Elektroden für so etwas gibt es bei Amazon ziemlich günstig (Achtung, der Kleber nervt). Für eine Schaltung habe ich ein paar verschiedene Konfigurationen ausprobiert – was ich am einfachsten fand/für mich am besten funktionierte, war eine einfache Instrumentenverst?rkerschaltung mit einem JFET-Operationsverst?rker (zusammengebaut auf einem Steckbrett). 3 Elektroden, schauen Sie sich einfach ein Diagramm an, wo Sie sie platzieren k?nnen. Wenn Sie die Audioschnittstelle für den ADC verwenden, sollte der Code hier mit dem 3-Elektroden-Steckbrett-Setup funktionieren (m?glicherweise muss die Verst?rkung angepasst werden)
Warum
Die Inspiration für dieses Miniprojekt entstand, als ich mit einem EQ-Plug-in in einer DAW herumspielte, w?hrend ich ein Gitarrenkabel in der Hand hielt.
Das obige ist der detaillierte Inhalt vonEinfache DIY-HR-Monitor-EKG-Anzeige. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Hei?e KI -Werkzeuge

Undress AI Tool
Ausziehbilder kostenlos

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?er Artikel

Hei?e Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Der Schlüssel zum Umgang mit der API -Authentifizierung besteht darin, die Authentifizierungsmethode korrekt zu verstehen und zu verwenden. 1. Apikey ist die einfachste Authentifizierungsmethode, die normalerweise in den Anforderungsheader- oder URL -Parametern platziert ist. 2. BasicAuth verwendet Benutzername und Kennwort für die Basis64 -Codierungsübertragung, die für interne Systeme geeignet ist. 3.. OAuth2 muss das Token zuerst über Client_id und Client_secret erhalten und dann das BearerToken in den Anforderungsheader bringen. V. Kurz gesagt, die Auswahl der entsprechenden Methode gem?? dem Dokument und das sichere Speichern der Schlüsselinformationen ist der Schlüssel.

Assert ist ein Inssertion -Tool, das in Python zum Debuggen verwendet wird, und wirft einen Assertionerror aus, wenn der Zustand nicht erfüllt ist. Die Syntax ist eine geltende Bedingung sowie optionale Fehlerinformationen, die für die interne Logiküberprüfung geeignet sind, z. B. Parameterprüfung, Statusbest?tigung usw., k?nnen jedoch nicht für die Sicherheits- oder Benutzereingabeprüfung verwendet werden und sollten in Verbindung mit klaren Eingabeaufforderungen verwendet werden. Es ist nur zum Hilfsdebuggen in der Entwicklungsphase verfügbar, anstatt die Ausnahmebehandlung zu ersetzen.

INPYTHON, ITERATORATORSAROBJECTSHATALWOULOUPING ThroughCollections Byimplementing__iter __ () und __Next __ (). 1) IteratorsworkviATheiterProtocol, verwendete __iter __ () toreturn thiteratorand__Next __ () torethentexteemtemuntemuntilstoperationSaised.2) und

TypHintsinpythonsolvetheProblemofAmbiguityAndpotentialbugsindynamicalpedCodeByAllowingDevelopstospecifyexpectypes

Eine gemeinsame Methode, um zwei Listen gleichzeitig in Python zu durchqueren, besteht darin, die Funktion ZIP () zu verwenden, die mehrere Listen in der Reihenfolge und die kürzeste ist. Wenn die Listenl?nge inkonsistent ist, k?nnen Sie iTertools.zip_longest () verwenden, um die l?ngste zu sein und die fehlenden Werte auszufüllen. In Kombination mit Enumerate () k?nnen Sie den Index gleichzeitig erhalten. 1.zip () ist pr?gnant und praktisch, geeignet für die Iteration gepaarte Daten; 2.zip_longest () kann den Standardwert beim Umgang mit inkonsistenten L?ngen einfüllen. 3.Enumerate (ZIP ()) kann w?hrend des Durchlaufens Indizes erhalten und die Bedürfnisse einer Vielzahl komplexer Szenarien erfüllen.

Um moderne und effiziente APIs mit Python zu schaffen, wird Fastapi empfohlen. Es basiert auf Eingabeaufforderungen an Standardpython -Typ und kann automatisch Dokumente mit ausgezeichneter Leistung generieren. Nach der Installation von Fastapi und ASGI Server Uvicorn k?nnen Sie Schnittstellencode schreiben. Durch das Definieren von Routen, das Schreiben von Verarbeitungsfunktionen und die Rückgabe von Daten kann schnell APIs erstellt werden. Fastapi unterstützt eine Vielzahl von HTTP -Methoden und bietet automatisch generierte Swaggerui- und Redoc -Dokumentationssysteme. URL -Parameter k?nnen durch Pfaddefinition erfasst werden, w?hrend Abfrageparameter durch Einstellen von Standardwerten für Funktionsparameter implementiert werden k?nnen. Der rationale Einsatz pydantischer Modelle kann dazu beitragen, die Entwicklungseffizienz und Genauigkeit zu verbessern.

Um die API zu testen, müssen Sie Pythons Anfragebibliothek verwenden. In den Schritten werden die Bibliothek installiert, Anfragen gesendet, Antworten überprüfen, Zeitüberschreitungen festlegen und erneut werden. Installieren Sie zun?chst die Bibliothek über PipinstallRequests. Verwenden Sie dann Requests.get () oder Requests.Post () und andere Methoden zum Senden von GET- oder Post -Anfragen. überprüfen Sie dann die Antwort. Fügen Sie schlie?lich Zeitüberschreitungsparameter hinzu, um die Zeitüberschreitungszeit festzulegen, und kombinieren Sie die Wiederholungsbibliothek, um eine automatische Wiederholung zu erreichen, um die Stabilit?t zu verbessern.

Eine virtuelle Umgebung kann die Abh?ngigkeiten verschiedener Projekte isolieren. Der Befehl ist mit Pythons eigenem Venvidenmodul erstellt und ist Python-Mvenvenv. Aktivierungsmethode: Windows verwendet Env \ scripts \ aktivieren, macOS/Linux verwendet SourceEnv/bin/aktivieren; Das Installationspaket verwendet PipInstall, verwenden Sie Pipfreeze> Anforderungen.txt, um Anforderungsdateien zu generieren, und verwenden Sie Pipinstall-Rrequirements.txt, um die Umgebung wiederherzustellen. Zu den Vorsichtsma?nahmen geh?ren nicht das Senden von Git, reaktivieren Sie jedes Mal, wenn das neue Terminal ge?ffnet wird, und die automatische Identifizierung und Umschaltung kann von IDE verwendet werden.
