鏡像下載、域名解析、時(shí)間同步請(qǐng)點(diǎn)擊 阿里云開源鏡像站
本文主要學(xué)習(xí) ROS機(jī)器人操作系統(tǒng) ,在ROS系統(tǒng)里調(diào)用 OpenCV庫(kù) 實(shí)現(xiàn)人臉識(shí)別任務(wù)
sudo apt-get install ros-kinetic-desktop-full
安裝攝像頭組件相關(guān)的包,命令行如下:
sudo apt-get install ros-kinetic-usb-cam
啟動(dòng)攝像頭,命令行如下:
roslaunch usb_cam usb_cam-test.launch
調(diào)用攝像頭成功,如下圖所示:
攝像頭的驅(qū)動(dòng)發(fā)布的相關(guān)數(shù)據(jù),如下圖所示:
攝像頭 usb_cam/image_raw 這個(gè)話題,發(fā)布的消息的具體類型,如下圖所示:
那么圖像消息里面的成員變量有哪些呢?
打印一下就知道了!一個(gè)消息類型里面的具體成員變量,如下圖所示:
Header:很多話題消息里面都包含的
消息頭:包含消息序號(hào),時(shí)間戳和綁定坐標(biāo)系
消息的序號(hào):表示我們這個(gè)消息發(fā)布是排第幾位的,并不需要我們手動(dòng)去標(biāo)定,每次
發(fā)布消息的時(shí)候會(huì)自動(dòng)地去累加
綁定坐標(biāo)系:表示的是我們是針對(duì)哪一個(gè)坐標(biāo)系去發(fā)布的header有時(shí)候也不需要去配置
height:圖像的縱向分辨率
width:圖像的橫向分辨率
encoding:圖像的編碼格式,包含RGB、YUV等常用格式,都是原始圖像的編碼格式,不涉及圖像壓縮編碼
is_bigendian: 圖像數(shù)據(jù)的大小端存儲(chǔ)模式
step:一行圖像數(shù)據(jù)的字節(jié)數(shù)量,作為數(shù)據(jù)的步長(zhǎng)參數(shù)
data:存儲(chǔ)圖像數(shù)據(jù)的數(shù)組,大小為step×height個(gè)字節(jié)
format:圖像的壓縮編碼格式(jpeg、png、bmp)
在ROS當(dāng)中完成OpenCV的安裝,命令行如下圖所示:
sudo apt-get install ros-kinetic-vision-opencv libopencv-dev python-opencv
安裝完成
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace
cd ~/catkin_ws/
catkin_make
工作空間中會(huì)自動(dòng)生成兩個(gè)文件夾:devel,build
devel文件夾中產(chǎn)生幾個(gè)setup.*sh形成的環(huán)境變量設(shè)置腳本,使用source命令運(yùn)行這些腳本文件,則工作空間中的環(huán)境變量得以生效
source devel/setup.sh
gedit ~/.bashrc
source ~/catkin_ws/devel/setup.bash
開始創(chuàng)建
cd ~/catkin_ws/src
catkin_create_pkg learning std_msgs rospy roscpp
回到根目錄,編譯并設(shè)置環(huán)境變量
cd ~/catkin_ws
catkin_make
source ~/catkin_ws/devel/setup.sh
基于 Haar 特征的級(jí)聯(lián)分類器檢測(cè)算法
核心內(nèi)容,如下所示:
face_detector.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeError
class faceDetector:
def __init__(self):
rospy.on_shutdown(self.cleanup);
# 創(chuàng)建cv_bridge
self.bridge = CvBridge()
self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
# 獲取haar特征的級(jí)聯(lián)表的XML文件,文件路徑在launch文件中傳入
cascade_1 = rospy.get_param("~cascade_1", "")
cascade_2 = rospy.get_param("~cascade_2", "")
# 使用級(jí)聯(lián)表初始化haar特征檢測(cè)器
self.cascade_1 = cv2.CascadeClassifier(cascade_1)
self.cascade_2 = cv2.CascadeClassifier(cascade_2)
# 設(shè)置級(jí)聯(lián)表的參數(shù),優(yōu)化人臉識(shí)別,可以在launch文件中重新配置
self.haar_scaleFactor = rospy.get_param("~haar_scaleFactor", 1.2)
self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 2)
self.haar_minSize = rospy.get_param("~haar_minSize", 40)
self.haar_maxSize = rospy.get_param("~haar_maxSize", 60)
self.color = (50, 255, 50)
# 初始化訂閱rgb格式圖像數(shù)據(jù)的訂閱者,此處圖像topic的話題名可以在launch文件中重映射
self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1)
def image_callback(self, data):
# 使用cv_bridge將ROS的圖像數(shù)據(jù)轉(zhuǎn)換成OpenCV的圖像格式
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
frame = np.array(cv_image, dtype=np.uint8)
except CvBridgeError, e:
print e
# 創(chuàng)建灰度圖像
grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 創(chuàng)建平衡直方圖,減少光線影響
grey_image = cv2.equalizeHist(grey_image)
# 嘗試檢測(cè)人臉
faces_result = self.detect_face(grey_image)
# 在opencv的窗口中框出所有人臉區(qū)域
if len(faces_result)>0:
for face in faces_result:
x, y, w, h = face
cv2.rectangle(cv_image, (x, y), (x+w, y+h), self.color, 2)
# 將識(shí)別后的圖像轉(zhuǎn)換成ROS消息并發(fā)布
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
def detect_face(self, input_image):
# 首先匹配正面人臉的模型
if self.cascade_1:
faces = self.cascade_1.detectMultiScale(input_image,
self.haar_scaleFactor,
self.haar_minNeighbors,
cv2.CASCADE_SCALE_IMAGE,
(self.haar_minSize, self.haar_maxSize))
# 如果正面人臉匹配失敗,那么就嘗試匹配側(cè)面人臉的模型
if len(faces) == 0 and self.cascade_2:
faces = self.cascade_2.detectMultiScale(input_image,
self.haar_scaleFactor,
self.haar_minNeighbors,
cv2.CASCADE_SCALE_IMAGE,
(self.haar_minSize, self.haar_maxSize))
return faces
def cleanup(self):
print "Shutting down vision node."
cv2.destroyAllWindows()
if __name__ == '__main__':
try:
# 初始化ros節(jié)點(diǎn)
rospy.init_node("face_detector")
faceDetector()
rospy.loginfo("Face detector is started..")
rospy.loginfo("Please subscribe the ROS image.")
rospy.spin()
except KeyboardInterrupt:
print "Shutting down face detector node."
cv2.destroyAllWindows()
usb_cam.launch
<launch>
<node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
<param name="video_device" value="/dev/video0" />
<param name="image_width" value="640" />
<param name="image_height" value="480" />
<param name="pixel_format" value="yuyv" />
<param name="camera_frame_id" value="usb_cam" />
<param name="io_method" value="mmap"/>
</node>
</launch>
face_detector.launch
<launch>
<node pkg="test2" name="face_detector" type="face_detector.py" output="screen">
<remap from="input_rgb_image" to="/usb_cam/image_raw" />
<rosparam>
haar_scaleFactor: 1.2
haar_minNeighbors: 2
haar_minSize: 40
haar_maxSize: 60
</rosparam>
<param name="cascade_1" value="$(find robot_vision)/data/haar_detectors/haarcascade_frontalface_alt.xml" />
<param name="cascade_2" value="$(find robot_vision)/data/haar_detectors/haarcascade_profileface.xml" />
</node>
</launch>
cv_bridge_test.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
class image_converter:
def __init__(self):
# 創(chuàng)建cv_bridge,聲明圖像的發(fā)布者和訂閱者
self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.callback)
def callback(self,data):
# 使用cv_bridge將ROS的圖像數(shù)據(jù)轉(zhuǎn)換成OpenCV的圖像格式
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print e
# 在opencv的顯示窗口中繪制一個(gè)圓,作為標(biāo)記
(rows,cols,channels) = cv_image.shape
if cols > 60 and rows > 60 :
cv2.circle(cv_image, (60, 60), 30, (0,0,255), -1)
# 顯示Opencv格式的圖像
cv2.imshow("Image window", cv_image)
cv2.waitKey(3)
# 再將opencv格式額數(shù)據(jù)轉(zhuǎn)換成ros image格式的數(shù)據(jù)發(fā)布
try:
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
except CvBridgeError as e:
print e
if __name__ == '__main__':
try:
# 初始化ros節(jié)點(diǎn)
rospy.init_node("cv_bridge_test")
rospy.loginfo("Starting cv_bridge_test node")
image_converter()
rospy.spin()
except KeyboardInterrupt:
print "Shutting down cv_bridge_test node."
cv2.destroyAllWindows()
分別在三個(gè)終端下運(yùn)行,命令行如下:
啟動(dòng)攝像頭
roslaunch robot_vision usb_cam.launch
啟動(dòng)人臉識(shí)別
roslaunch robot_vision face_detector.launch
打開人臉識(shí)別窗口
rqt_image_view
拿了C站官方送的書來(lái)進(jìn)行測(cè)試,識(shí)別的效果還是相當(dāng)不錯(cuò)的,效果如下圖所示:
解決方法: 網(wǎng)上下載編譯安裝
$ cd catkin_ws/src
$ git clone https://github.com/bosch-ros-pkg/usb_cam.git
$ cd ~/catkin_ws
$ catkin_make
成功解決:
解決方法:輸入以下命令行,再啟動(dòng)攝像頭
source ~/catkin_ws/devel/setup.bash
成功解決:
解決方法:打開虛擬機(jī)設(shè)置,更改usb版本為3.1
可移動(dòng)設(shè)備將攝像頭設(shè)置連接
在ROS操作系統(tǒng)中調(diào)用 OpenCV 完成人臉識(shí)別還是比較有意思的,目前圖像處理和人臉識(shí)別還是比較常用到的,本文主要記錄學(xué)習(xí)過(guò)程,以及遇到的相關(guān)報(bào)錯(cuò)問(wèn)題進(jìn)行記錄
如何對(duì)于特定目標(biāo)的檢測(cè)并顯示出結(jié)果?如何優(yōu)化讓人臉識(shí)別的更精準(zhǔn)?目前還在朝著這個(gè)方向進(jìn)行思考和探究
原文鏈接:https://blog.csdn.net/m0_61745661/article/details/125578352
微信掃碼
關(guān)注PHP中文網(wǎng)服務(wù)號(hào)
QQ掃碼
加入技術(shù)交流群
Copyright 2014-2025 http://ipnx.cn/ All Rights Reserved | php.cn | 湘ICP備2023035733號(hào)